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1 Getting Started

1-2

Partial Differential Equation Toolbox Product Description
Solve partial differential equations using finite element analysis

Partial Differential Equation Toolbox provides functions for solving partial differential
equations (PDEs) in 2-D, 3-D, and time using finite element analysis. It lets you specify
and mesh 2-D and 3-D geometries and formulate boundary conditions and equations.
You can solve static, time domain, frequency domain, and eigenvalue problems over the
domain of the geometry. Functions for postprocessing and plotting results enable you to
visually explore the solution.

You can use Partial Differential Equation Toolbox to solve PDEs from standard problems
such as diffusion, heat transfer, structural mechanics, electrostatics, magnetostatics, and
AC power electromagnetics, as well as custom, coupled systems of PDEs.

Key Features

• Solvers for coupled systems of PDEs: static, time domain, frequency domain, and
eigenvalue

• PDE specification for elliptic, parabolic, and hyperbolic problems
• Boundary condition specification: Dirichlet, generalized Neumann, and mixed
• Functions for 2-D geometry creation and 3-D geometry import from STL files
• Automatic meshing using tetrahedra and triangles
• Simultaneous visualization of multiple solution properties, mesh overlays, and

animation
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Types of PDE Problems You Can Solve

This toolbox applies to the following PDE type:

-— ◊ —( ) + =c u au f ,

expressed in Ω, which we shall refer to as the elliptic equation, regardless of whether its
coefficients and boundary conditions make the PDE problem elliptic in the mathematical
sense. Analogously, we shall use the terms parabolic equation and hyperbolic equation
for equations with spatial operators like the previous one, and first and second order time
derivatives, respectively. Ω is a bounded domain in the plane or is a bounded 3-D region.
c, a, f, and the unknown u are scalar, complex valued functions defined on Ω. c can be a
matrix function on Ω (see “c Coefficient for Systems” on page 2-95). The software can
also handle the parabolic PDE

d c au f
u

t
u

∂

∂
—-— ◊ ( ) + = ,

the hyperbolic PDE

d
u

t
c u au f

∂

∂
— ◊ —( ) + =-

2

2
,

and the eigenvalue problem

-— ◊ —( ) + =c u au dul ,

where d is a complex valued function on Ω, and λ is an unknown eigenvalue. For the
parabolic and hyperbolic PDE the coefficients c, a, f, and d can depend on time, on the
solution u, and on its gradient ∇u. A nonlinear solver (pdenonlin) is available for the
nonlinear elliptic PDE

-— ◊ —( ) + =c u u a u u f u( ) ( ) ( ),

where c, a, and f are functions of the unknown solution u and of its gradient ∇u. The
parabolic and hyperbolic equation solvers also solve nonlinear and time-dependent
problems.
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Note Before solving a nonlinear elliptic PDE, from the Solve menu in the PDE app,
select Parameters. Then, select the Use nonlinear solver check box and click OK.

All solvers can handle the system case of N coupled equations. You can solve N = 1
or 2 equations using the PDE app, and any number of equations using command-line
functions. For example, N = 2 elliptic equations:

- -

- -

— —( ) — —( ) + + =

— —( ) — —(

· ·

· ·

c u c u a u a u f

c u c u

11 1 12 2 11 1 12 2 1

21 1 22 2 )) + + =a u a u f21 1 22 2 2.

For a description of N > 1 PDE systems and their coefficients, see “Coefficients for
Systems of PDEs” on page 2-86.

For the elliptic problem, an adaptive mesh refinement algorithm is implemented. It
can also be used in conjunction with the nonlinear solver. In addition, a fast solver for
Poisson's equation on a rectangular grid is available.

The following boundary conditions are defined for scalar u:

• Dirichlet: hu = r on the boundary ∂Ω.
• Generalized Neumann: rn c u qu g· —( ) + =  on ∂Ω.

r

n  is the outward unit normal. g, q, h, and r are complex-valued functions defined on ∂Ω.
(The eigenvalue problem is a homogeneous problem, i.e., g = 0, r = 0.) In the nonlinear
case, the coefficients g, q, h, and r can depend on u, and for the hyperbolic and parabolic
PDE, the coefficients can depend on time. For the two-dimensional system case, Dirichlet
boundary condition is

h u h u r

h u h u r

11 1 12 2 1

21 1 22 2 2

+ =

+ = ,

the generalized Neumann boundary condition is

r r

r r

n c u n c u q u q u g

n c u n c u

· ·

· ·

11 1 12 2 11 1 12 2 1

21 1 22

—( ) —( ) + + =

—( ) + —

+

22 21 1 22 2 2( ) + + =q u q u g .

and the mixed boundary condition is
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h u h u r

hn c u n c u q u q u g
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1111 1 12 2 11 1 12 2 1

+ =

+—( ) —( ) + + = +
r r

r

· · m

nn c u n c u q u q u g h· · ,21 1 22 2 21 1 22 2 2 12—( ) + —( ) + + = +
r

m

where µ is computed such that the Dirichlet boundary condition is satisfied. Dirichlet
boundary conditions are also called essential boundary conditions, and Neumann
boundary conditions are also called natural boundary conditions.

For advanced, nonstandard applications you can transfer the description of domains,
boundary conditions etc. to your MATLAB® workspace. From there you use Partial
Differential Equation Toolbox functions for managing data on unstructured meshes. You
have full access to the mesh generators, FEM discretizations of the PDE and boundary
conditions, interpolation functions, etc. You can design your own solvers or use FEM to
solve subproblems of more complex algorithms. See also “Solve PDEs Programmatically”
on page 3-118.
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Common Toolbox Applications

Elliptic and parabolic equations are used for modeling:

• Steady and unsteady heat transfer in solids
• Flows in porous media and diffusion problems
• Electrostatics of dielectric and conductive media
• Potential flow
• Steady state of wave equations

Hyperbolic equation is used for:

• Transient and harmonic wave propagation in acoustics and electromagnetics
• Transverse motions of membranes

Eigenvalue problems are used for:

• Determining natural vibration states in membranes and structural mechanics
problems

In addition to solving generic scalar PDEs and generic systems of PDEs with vector
valued u, Partial Differential Equation Toolbox provides tools for solving PDEs that occur
in these common applications in engineering and science:

• “Structural Mechanics — Plane Stress” on page 3-7
• “Structural Mechanics — Plane Strain” on page 3-13
• “Electrostatics” on page 3-33
• “Magnetostatics” on page 3-41
• “AC Power Electromagnetics” on page 3-48
• “Conductive Media DC” on page 3-54
• “Heat Transfer” on page 3-61
• “Diffusion” on page 3-75

The PDE app lets you specify PDE coefficients and boundary conditions in terms of
physical entities. For example, you can specify Young's modulus in structural mechanics
problems.

The application mode can be selected directly from the pop-up menu in the upper right
part of the PDE app or by selecting an application from the Application submenu in
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the Options menu. Changing the application resets all PDE coefficients and boundary
conditions to the default values for that specific application mode.

When using an application mode, the generic PDE coefficients are replaced by
application-specific parameters such as Young's modulus for problems in structural
mechanics. The application-specific parameters are entered by selecting Parameters
from the PDE menu or by clicking the PDE button. You can also access the PDE
parameters by double-clicking a subdomain, if you are in the PDE mode. That way it
is possible to define PDE parameters for problems with regions of different material
properties. The Boundary condition dialog box is also altered so that the Description
column reflects the physical meaning of the different boundary condition coefficients.
Finally, the Plot Selection dialog box allows you to visualize the relevant physical
variables for the selected application.

Note In the User entry options in the Plot Selection dialog box, the solution and its
derivatives are always referred to as u, ux, and uy (v, vx, and vy for the system cases)
even if the application mode is nongeneric and the solution of the application-specific
PDE normally is named, e.g., V or T.

The PDE app lets you solve problems with vector valued u of dimension two. However,
you can use functions to solve problems for any dimension of u.
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Solve 2-D PDEs Using the PDE App

Solve 2-D PDE problems using the PDE app by following these steps:

1 Define the 2-D geometry.

You create Ω, the geometry, using the constructive solid geometry (CSG) model
paradigm. A set of solid objects (rectangle, circle, ellipse, and polygon) is provided.
You can combine these objects using set formulas. See “Specify Geometry Using a
CSG Model” on page 2-5.

2 Define the boundary conditions.

You can have different types of boundary conditions on different boundary segments.
See “Classification of Boundary Conditions” on page 2-125.

3 Define the PDE coefficients. See “Scalar PDE Coefficients” on page 2-59 and
“Coefficients for Systems of PDEs” on page 2-86.

You interactively specify the type of PDE and the coefficients c, a, f, and d. You
can specify the coefficients for each subdomain independently. This may ease the
specification of, e.g., various material properties in a PDE model.

4 Create the triangular mesh.

Generate the mesh to a fineness that adequately resolves the important features
in the geometry, but is coarse enough to run in a reasonable amount of time and
memory.

5 Solve the PDE.

You can invoke and control the nonlinear and adaptive solvers for elliptic problems.
For parabolic and hyperbolic problems, you can specify the initial values, and the
times for which the output should be generated. For the eigenvalue solver, you can
specify the interval in which to search for eigenvalues.

6 Plot the solution and other physical properties calculated from the solution (post
processing).

After solving a problem, you can return to the mesh mode to further refine your mesh
and then solve again. You can also employ the adaptive mesh refiner and solver,
adaptmesh. This option tries to find a mesh that fits the solution.
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For examples, see “Poisson’s Equation with Complex 2-D Geometry” on page 1-11,
“Solve Poisson's Equation on a Unit Disk” on page 3-76, “Conductive Media DC” on
page 3-54, or “Minimal Surface Problem” on page 3-85.
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Visualize and Animate Solutions

From the PDE app you can use plot mode, where you have a wide range of visualization
possibilities. You can visualize both inside the PDE app and in separate figures. You can
plot three different solution properties at the same time, using color, height, and vector
field plots.

Surface, mesh, contour, and arrow (quiver) plots are available. For surface plots, you can
choose between interpolated and flat rendering schemes. The mesh may be hidden or
exposed in all plot types.

For parabolic and hyperbolic equations, you can even produce an animated movie of
the solution's time dependence. All visualization functions are also accessible from the
command line.
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Poisson’s Equation with Complex 2-D Geometry
This example shows how to solve the Poisson's equation, –Δu = f using the PDE app. This
problem requires configuring a 2-D geometry with Dirichlet and Neumann boundary
conditions.

To start the PDE app, type the command pdetool at the MATLAB prompt. The PDE
app looks similar to the following figure, with exception of the grid. Turn on the grid
by selecting Grid from the Options menu. Also, enable the “snap-to-grid” feature by
selecting Snap from the Options menu. The “snap-to-grid” feature simplifies aligning
the solid objects.



1 Getting Started

1-12

The first step is to draw the geometry on which you want to solve the PDE. The PDE app
provides four basic types of solid objects: polygons, rectangles, circles, and ellipses. The
objects are used to create a Constructive Solid Geometry model (CSG model). Each solid
object is assigned a unique label, and by the use of set algebra, the resulting geometry
can be made up of a combination of unions, intersections, and set differences. By default,
the resulting CSG model is the union of all solid objects.

To select a solid object, either click the button with an icon depicting the solid object
that you want to use, or select the object by using the Draw pull-down menu. In this
case, rectangle/square objects are selected. To draw a rectangle or a square starting at
a corner, click the rectangle button without a + sign in the middle. The button with the
+ sign is used when you want to draw starting at the center. Then, put the cursor at the
desired corner, and click-and-drag using the left mouse button to create a rectangle with
the desired side lengths. (Use the right mouse button to create a square.) Click and drag
from (–1,.2) to (1,–.2). Notice how the “snap-to-grid” feature forces the rectangle to line up
with the grid. When you release the mouse, the CSG model is updated and redrawn. At
this stage, all you have is a rectangle. It is assigned the label R1. If you want to move or
resize the rectangle, you can easily do so. Click-and-drag an object to move it, and double-
click an object to open a dialog box, where you can enter exact location coordinates. From
the dialog box, you can also alter the label. If you are not satisfied and want to restart,
you can delete the rectangle by clicking the Delete key or by selecting Clear from the
Edit menu.

Next, draw a circle by clicking the button with the ellipse icon with the + sign, and then
click-and-drag in a similar way, starting near the point (–.5,0) with radius .4, using the
right mouse button, starting at the circle center.
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The resulting CSG model is the union of the rectangle R1 and the circle C1, described
by set algebra as R1+C1. The area where the two objects overlap is clearly visible as it
is drawn using a darker shade of gray. The object that you just drew—the circle—has
a black border, indicating that it is selected. A selected object can be moved, resized,
copied, and deleted. You can select more than one object by Shift+clicking the objects
that you want to select. Also, a Select All option is available from the Edit menu.

Finally, add two more objects, a rectangle R2 from (.5,–.6) to (1,1), and a circle C2
centered at (.5,.2) with radius .2. The desired CSG model is formed by subtracting the
circle C2 from the union of the other three objects. You do this by editing the set formula
that by default is the union of all objects: C1+R1+R2+C2. You can type any other valid
set formula into Set formula edit field. Click in the edit field and use the keyboard to
change the set formula to



1 Getting Started

1-14

(R1+C1+R2)-C2

If you want, you can save this CSG model as a file. Use the Save As option from the File
menu, and enter a filename of your choice. It is good practice to continue to save your
model at regular intervals using Save. All the additional steps in the process of modeling
and solving your PDE are then saved to the same file. This concludes the drawing part.

You can now define the boundary conditions for the outer boundaries. Enter the
boundary mode by clicking the ∂Ω icon or by selecting Boundary Mode from the
Boundary menu. You can now remove subdomain borders and define the boundary
conditions.

The gray edge segments are subdomain borders induced by the intersections of the
original solid objects. Borders that do not represent borders between, e.g., areas with
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differing material properties, can be removed. From the Boundary menu, select the
Remove All Subdomain Borders option. All borders are then removed from the
decomposed geometry.

The boundaries are indicated by colored lines with arrows. The color reflects the type
of boundary condition, and the arrow points toward the end of the boundary segment.
The direction information is provided for the case when the boundary condition is
parameterized along the boundary. The boundary condition can also be a function of x
and y, or simply a constant. By default, the boundary condition is of Dirichlet type: u = 0
on the boundary.

Dirichlet boundary conditions are indicated by red color. The boundary conditions can
also be of a generalized Neumann (blue) or mixed (green) type. For scalar u, however,
all boundary conditions are either of Dirichlet or the generalized Neumann type. You
select the boundary conditions that you want to change by clicking to select one boundary
segment, by Shift+clicking to select multiple segments, or by using the Edit menu
option Select All to select all boundary segments. The selected boundary segments are
indicated by black color.

For this problem, change the boundary condition for all the circle arcs. Select them by
using the mouse and Shift+click those boundary segments.
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Double-clicking anywhere on the selected boundary segments opens the Boundary
Condition dialog box. Here, you select the type of boundary condition, and enter the
boundary condition as a MATLAB expression. Change the boundary condition along the
selected boundaries to a Neumann condition, ∂u/∂n = –5. This means that the solution
has a slope of –5 in the normal direction for these boundary segments.

In the Boundary Condition dialog box, select the Neumann condition type, and enter
-5 in the edit box for the boundary condition parameter g. To define a pure Neumann
condition, leave the q parameter at its default value, 0. When you click the OK button,
notice how the selected boundary segments change to blue to indicate Neumann
boundary condition.
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Next, specify the PDE itself through a dialog box that is accessed by clicking the
button with the PDE icon or by selecting PDE Specification from the PDE menu. In
PDE mode, you can also access the PDE Specification dialog box by double-clicking a
subdomain. That way, different subdomains can have different PDE coefficient values.
This problem, however, consists of only one subdomain.

In the dialog box, you can select the type of PDE (elliptic, parabolic, hyperbolic, or
eigenmodes) and define the applicable coefficients depending on the PDE type. This
problem consists of an elliptic PDE defined by the equation

-— ◊ —( ) + =c u au f ,

with c = 1.0, a = 0.0, and f = 10.0.
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Finally, create the triangular mesh that Partial Differential Equation Toolbox software
uses in the Finite Element Method (FEM) to solve the PDE. The triangular mesh is

created and displayed when clicking the button with the  icon or by selecting the
Mesh menu option Initialize Mesh. If you want a more accurate solution, the mesh
can be successively refined by clicking the button with the four triangle icon (the Refine
button) or by selecting the Refine Mesh option from the Mesh menu.

Using the Jiggle Mesh option, the mesh can be jiggled to improve the triangle quality.
Parameters for controlling the jiggling of the mesh, the refinement method, and other
mesh generation parameters can be found in a dialog box that is opened by selecting
Parameters from the Mesh menu. You can undo any change to the mesh by selecting
the Mesh menu option Undo Mesh Change.

Initialize the mesh, then refine it once and finally jiggle it once.
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We are now ready to solve the problem. Click the = button or select Solve PDE from
the Solve menu to solve the PDE. The solution is then plotted. By default, the plot uses
interpolated coloring and a linear color map. A color bar is also provided to map the
different shades to the numerical values of the solution. If you want, the solution can be
exported as a vector to the MATLAB main workspace.
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There are many more plot modes available to help you visualize the solution. Click the
button with the 3-D solution icon or select Parameters from the Plot menu to access the
dialog box for selection of the different plot options. Several plot styles are available, and
the solution can be plotted in the PDE app or in a separate figure as a 3-D plot.
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Now, select a plot where the color and the height both represent u. Choose interpolated
shading and use the continuous (interpolated) height option. The default colormap is
the cool colormap; a pop-up menu lets you select from a number of different colormaps.
Finally, click the Plot button to plot the solution; click the Close button to save the plot
setup as the current default. The solution is plotted as a 3-D plot in a separate figure
window.

The following solution plot is the result. You can use the mouse to rotate the plot in 3-
D. By clicking-and-dragging the axes, the angle from which the solution is viewed can be
changed.
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PDE App Shortcuts

PDE app toolbar provide quick access to key operations that are also available in the
menus.

The toolbar consists of three different parts: the five leftmost buttons for draw mode
functions, the next six buttons for different boundary, mesh, solution, and plot functions,
and the rightmost button for activating the zoom feature.

Five buttons on the left let you draw the geometry. Double-click a button makes it “stick,”
and you can then continue to draw solid objects of the selected type until you single-click
the button to “release” it.

In draw mode, you can create the 2-D geometry using the constructive solid geometry
(CSG) model paradigm. A set of solid objects (rectangle, circle, ellipse, and polygon) is
provided. These objects can be combined using set formulas in a flexible way.

Draw a rectangle/square starting at a corner.

Using the left mouse button, click-and-drag to create a rectangle. Using
the right mouse button (or Ctrl+click), click-and-drag to create a square.
Draw a rectangle/square starting at the center.

Using the left mouse button, click-and-drag to create a rectangle. Using
the right mouse button (or Ctrl+click), click-and-drag to create a square.
Draw an ellipse/circle starting at the perimeter.

Using the left mouse button, click-and-drag to create an ellipse. Using
the right mouse button (or Ctrl+click), click-and-drag to create a circle.
Draw an ellipse/circle starting at the center.

Using the left mouse button, click-and-drag to create an ellipse. Using
the right mouse button (or Ctrl+click), click-and-drag to create a circle.
Draw a polygon. Click-and-drag to create polygon edges. You can close
the polygon by pressing the right mouse button. Clicking at the starting
vertex also closes the polygon.
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The remaining buttons represent, from left to right:

Enters the boundary mode.

In boundary mode, you can specify the boundary conditions. You can
have different types of boundary conditions on different boundaries.
In this mode, the original shapes of the solid objects constitute borders
between subdomains of the model. Such borders can be eliminated in this
mode.
Opens the PDE Specification dialog box.

In PDE mode, you can interactively specify the type of PDE problem, and
the PDE coefficients. You can specify the coefficients for each subdomain
independently. This makes it easy to specify, e.g., various material
properties in a PDE model.
Initializes the triangular mesh

In mesh mode, you can control the automated mesh generation and plot
the mesh.
Refines the triangular mesh.

Solves the PDE.

In solve mode, you can invoke and control the nonlinear and adaptive
solver for elliptic problems. For parabolic and hyperbolic PDE problems,
you can specify the initial values, and the times for which the output
should be generated. For the eigenvalue solver, you can specify the
interval in which to search for eigenvalues.
3-D solution opens the Plot Selection dialog box.

In plot mode, there is a wide range of visualization possibilities. You
can visualize both in the PDE app and in a separate figure window.
You can visualize three different solution properties at the same time,
using color, height, and vector field plots. There are surface, mesh,
contour, and arrow (quiver) plots available. For parabolic and hyperbolic
equations, you can animate the solution as it changes with time.
Toggles zoom.
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Finite Element Method (FEM) Basics

The core Partial Differential Equation Toolbox algorithm is a PDE solver that uses the
Finite Element Method (FEM) for problems defined on bounded domains in the plane.

The solutions of simple PDEs on complicated geometries can rarely be expressed
in terms of elementary functions. You are confronted with two problems: First you
need to describe a complicated geometry and generate a mesh on it. Then you need to
discretize your PDE on the mesh and build an equation for the discrete approximation
of the solution. The PDE app provides you with easy-to-use graphical tools to describe
complicated domains and generate triangular meshes. It also discretizes PDEs, finds
discrete solutions and plots results. You can access the mesh structures and the
discretization functions directly from the command line (or from a file) and incorporate
them into specialized applications.

Here is an overview of the Finite Element Method (FEM). The purpose of this
presentation is to get you acquainted with the elementary FEM notions. Here you find
the precise equations that are solved and the nature of the discrete solution. Different
extensions of the basic equation implemented in Partial Differential Equation Toolbox
software are presented. A more detailed description can be found in “Elliptic Equations”,
with variants for specific types in “Systems of PDEs”, “Parabolic Equations”, “Hyperbolic
Equations”, “Eigenvalue Equations”, and “Nonlinear Equations”.

You start by approximating the computational domain Ω with a union of simple
geometric objects, in this case triangles (2-D geometry) or tetrahedra (3-D geometry).
(This discussion applies to both triangles and tetrahedra, but speaks of triangles.) The
triangles form a mesh and each vertex is called a node. You are in the situation of an
architect designing a dome. The architect has to strike a balance between the ideal
rounded forms of the original sketch and the limitations of the simple building-blocks,
triangles or quadrilaterals. If the result does not look close enough to a perfect dome, the
architect can always improve the result by using smaller blocks.

Next you say that your solution should be simple on each triangle. Polynomials are a
good choice: they are easy to evaluate and have good approximation properties on small
domains. You can ask that the solutions in neighboring triangles connect to each other
continuously across the edges. You can still decide how complicated the polynomials
can be. Just like an architect, you want them as simple as possible. Constants are the
simplest choice but you cannot match values on neighboring triangles. Linear functions
come next. This is like using flat tiles to build a waterproof dome, which is perfectly
possible.



1 Getting Started

1-26

A Triangular Mesh (left) and a Continuous Piecewise Linear Function on That Mesh

Now you use the basic elliptic equation (expressed in Ω)

-— ◊ —( ) + =c u au f .

If uh is the piecewise linear approximation to u, it is not clear what the second derivative
term means. Inside each triangle, ∇uh is a constant (because uh is flat) and thus
the second-order term vanishes. At the edges of the triangles, c∇uh is in general
discontinuous and a further derivative makes no sense.

What you are looking for is the best approximation of u in the class of continuous
piecewise polynomials. Therefore you test the equation for uh against all possible
functions v of that class. Testing means formally to multiply the residual against any
function and then integrate, i.e., determine uh such that

-( ) =— —( ) + -Ú · c u au f vdxh h

W

0

for all possible v. The functions v are usually called test functions.

Partial integration (Green's formula) yields that uh should satisfy
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where ∂Ω is the boundary of Ω and rn  is the outward pointing normal on ∂Ω. The
integrals of this formulation are well-defined even if uh and v are piecewise linear
functions.

Boundary conditions are included in the following way. If uh is known at some boundary
points (Dirichlet boundary conditions), we restrict the test functions to v = 0 at those
points, and require uh to attain the desired value at that point. At all the other points we
ask for Neumann boundary conditions, i.e., c u n qu gh h∇( ) ⋅ + =

r . The FEM formulation
reads: Find uh such that

c u v au v dx qu v ds gv dsfv dx vh h h∇( ) ⋅ ∇ +( ) + = + ∀∫ ∫ ∫∫∂ ∂Ω Ω ΩΩ
1 1

  ,

where ∂Ω1 is the part of the boundary with Neumann conditions. The test functions v
must be zero on ∂Ω – ∂Ω1.

Any continuous piecewise linear uh is represented as a combination

u x U xh i i

i

N

( ) ( ),=
=
Â f

1

where ϕi are some special piecewise linear basis functions and Ui are scalar coefficients.
Choose ϕi like a tent, such that it has the “height” 1 at the node i and the height 0 at all
other nodes. For any fixed v, the FEM formulation yields an algebraic equation in the
unknowns Ui. You want to determine N unknowns, so you need N different instances of
v. What better candidates than v = ϕi, i = 1, 2, ... , N? You find a linear system KU = F
where the matrix K and the right side F contain integrals in terms of the test functions
ϕi, ϕj, and the coefficients defining the problem: c, a, f, q, and g. The solution vector U
contains the expansion coefficients of uh, which are also the values of uh at each node xi,
since uh(xi) = Ui.

If the exact solution u is smooth, then FEM computes uh with an error of the same size
as that of the linear interpolation. It is possible to estimate the error on each triangle
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using only uh and the PDE coefficients (but not the exact solution u, which in general is
unknown).

There are Partial Differential Equation Toolbox functions that assemble K and F. This is
done automatically in the PDE app, but you also have direct access to the FEM matrices
from the command-line function assempde.

To summarize, the FEM approach is to approximate the PDE solution u by a piecewise
linear function uh. The function uh is expanded in a basis of test-functions ϕi, and the
residual is tested against all the basis functions. This procedure yields a linear system
KU = F. The components of U are the values of uh at the nodes. For x inside a triangle,
uh(x) is found by linear interpolation from the nodal values.

FEM techniques are also used to solve more general problems. The following are some
generalizations that you can access both through the PDE app and with command-line
functions.

• Time-dependent problems are easy to implement in the FEM context. The solution
u(x,t) of the equation

d c au f
u

t
u

∂

∂
—-— ◊ ( ) + = ,

can be approximated by

u x t U t xh i i
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N

( , ) ( ) ( ).=
=
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• This yields a system of ordinary differential equations (ODE)

M
dU

dt
KU F+ = ,

which you integrate using ODE solvers. Two time derivatives yield a second order
ODE
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etc. The toolbox supports problems with one or two time derivatives (the functions
parabolic and hyperbolic).

• Eigenvalue problems: Solve

-— ◊ —( ) + =c u au dul ,

for the unknowns u and λ (λ is a complex number). Using the FEM discretization,
you solve the algebraic eigenvalue problem KU = λhMU to find uh and λh as
approximations to u and λ. A robust eigenvalue solver is implemented in pdeeig.

• If the coefficients c, a, f, q, or g are functions of u or ∇u, the PDE is called nonlinear
and FEM yields a nonlinear system K(U)U = F(U). You can use iterative methods for
solving the nonlinear system. For elliptic equations, the toolbox provides a nonlinear
solver called pdenonlin using a damped Gauss-Newton method. The parabolic and
hyperbolic functions call the nonlinear solver automatically.

• Small triangles are needed only in those parts of the computational domain where
the error is large. In many cases the errors are large in a small region and making
all triangles small is a waste of computational effort. Making small triangles only
where needed is called adapting the mesh refinement to the solution. An iterative
adaptive strategy is the following: For a given mesh, form and solve the linear system
KU = F. Then estimate the error and refine the triangles in which the error is large.
The iteration is controlled by adaptmesh and the error is estimated by pdejmps.

Although the basic equation is scalar, systems of equations are also handled by the
toolbox. The interactive environment accepts u as a scalar or 2-vector function. In
command-line mode, systems of arbitrary size are accepted.

If c ≥ δ > 0 and a ≥ 0, under rather general assumptions on the domain Ω and the
boundary conditions, the solution u exists and is unique. The FEM linear system has a
unique solution which converges to u as the triangles become smaller. The matrix K and
the right side F make sense even when u does not exist or is not unique. It is advisable
that you devise checks to problems with questionable solutions.

References

[1] Cook, Robert D., David S. Malkus, and Michael E. Plesha, Concepts and Applications
of Finite Element Analysis, 3rd edition, John Wiley & Sons, New York, 1989.





2

Setting Up Your PDE

• “Open the PDE App” on page 2-3
• “Specify Geometry Using a CSG Model” on page 2-5
• “Select Graphical Objects Representing Your Geometry” on page 2-7
• “Rounded Corners Using CSG Modeling” on page 2-8
• “Solve Problems Using PDEModel Objects” on page 2-11
• “Create 2-D Geometry” on page 2-14
• “Create CSG Geometry at the Command Line” on page 2-16
• “Create Geometry Using a Geometry Function” on page 2-23
• “Create and View 3-D Geometry” on page 2-44
• “Functions That Support 3-D Geometry” on page 2-54
• “Put Equations in Divergence Form” on page 2-55
• “Systems of PDEs” on page 2-58
• “Scalar PDE Coefficients” on page 2-59
• “Specify Scalar PDE Coefficients in String Form” on page 2-61
• “Coefficients for Scalar PDEs in PDE App” on page 2-64
• “Specify 2-D Scalar Coefficients in Function Form” on page 2-67
• “Specify 3-D PDE Coefficients in Function Form” on page 2-70
• “Solve PDE with Coefficients in Functional Form” on page 2-72
• “Enter Coefficients in the PDE App” on page 2-78
• “Coefficients for Systems of PDEs” on page 2-86
• “Systems in the PDE App” on page 2-88
• “f Coefficient for Systems” on page 2-92
• “c Coefficient for Systems” on page 2-95
• “a or d Coefficient for Systems” on page 2-113
• “Initial Conditions” on page 2-116



2 Setting Up Your PDE

2-2

• “No Boundary Conditions Between Subdomains” on page 2-119
• “Identify Boundary Labels” on page 2-122
• “Forms of Boundary Condition Specification” on page 2-124
• “Classification of Boundary Conditions” on page 2-125
• “Specify Boundary Conditions Objects” on page 2-127
• “Specify Constant Boundary Conditions” on page 2-129
• “Solve PDEs with Constant Boundary Conditions” on page 2-133
• “Specify Nonconstant Boundary Conditions” on page 2-138
• “Solve PDEs with Nonconstant Boundary Conditions” on page 2-140
• “Changes to Boundary Conditions Object From R2014b” on page 2-146
• “Boundary Conditions by Writing Functions” on page 2-148
• “Tooltip Displays for Mesh and Plots” on page 2-160
• “Mesh Data” on page 2-161
• “Adaptive Mesh Refinement” on page 2-164



 Open the PDE App

2-3

Open the PDE App

For basic information on 2-D geometry construction, see “Create 2-D Geometry” on page
2-14

Partial Differential Equation Toolbox software includes the PDE app, which covers all
aspects of the PDE solution process. You start it by typing

pdetool 

at the MATLAB command line. It may take a while the first time you launch the PDE
app during a MATLAB session. The following figure shows the PDE app as it looks when
you start it.

At the top, the PDE app has a pull-down menu bar that you use to control the modeling.
Below the menu bar, a toolbar with icon buttons provide quick and easy access to some of
the most important functions.

To the right of the toolbar is a pop-up menu that indicates the current application mode.
You can also use it to change the application mode. The upper right part of the PDE
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app also provides the x- and y-coordinates of the current cursor position. This position is
updated when you move the cursor inside the main axes area in the middle of the PDE
app.

The edit box for the set formula contains the active set formula.

In the main axes you draw the 2-D geometry, display the mesh, and plot the solution.

At the bottom of the PDE app, an information line provides information about the
current activity. It can also display help information about the toolbar buttons.
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Specify Geometry Using a CSG Model

For basic information on 2-D geometry construction, see “Create 2-D Geometry” on page
2-14

You can specify complex geometries by overlapping solid objects. This approach to
representing geometries is called Constructive Solid Geometry (CSG).

Use these four solid objects to specify a geometry for your problem:

• Circle — Represents the set of points inside and on a circle.
• Polygon — Represents the set of points inside and on a polygon given by a set of line

segments.
• Rectangle — Represents the set of points inside and on a rectangle.
• Ellipse — Represents the set of points inside and on an ellipse. The ellipse can be

rotated.

When you draw a solid object in the PDE app, each solid object is automatically given a
unique name. Default names are C1, C2, C3, etc., for circles; P1, P2, P3, etc. for polygons;
R1, R2, R3, etc., for rectangles; E1, E2, E3, etc., for ellipses. Squares, although a special
case of rectangles, are named SQ1, SQ2, SQ3, etc. The name is displayed on the solid
object itself. You can use any unique name, as long as it contains no blanks. In draw
mode, you can alter the names and the geometries of the objects by double-clicking them,
which opens a dialog box. The following figure shows an object dialog box for a circle.

You can use the name of the object to refer to the corresponding set of points in a set
formula. The operators +, *, and – are used to form the set of points Ω in the plane
over which the differential equation is solved. The operators +, the set union operator,
and *, the set intersection operator, have the same precedence. The operator –, the set
difference operator, has higher precedence. The precedence can be controlled by using
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parentheses. The resulting geometrical model, Ω, is the set of points for which the set
formula evaluates to true. By default, it is the union of all solid objects. We often refer to
the area Ω as the decomposed geometry.
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Select Graphical Objects Representing Your Geometry

Throughout the PDE app, similar principles apply for selecting objects such as solid
objects, subdomains, and boundaries.

• To select a single object, click it using the left mouse button.
• To select several objects and to deselect objects, Shift+click (or click using the middle

mouse button) on the desired objects.
• Clicking in the intersection of several objects selects all the intersecting objects.
• To open an associated dialog box, double-click an object. If the object is not selected, it

is selected before opening the dialog box.

• In draw mode and PDE mode, clicking outside of objects deselects all objects.
• To select all objects, use the Select All option from the Edit menu.
• When defining boundary conditions and the PDE via the menu items from the

Boundary and PDE menus, and no boundaries or subdomains are selected, the
entered values applies to all boundaries and subdomains by default.
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Rounded Corners Using CSG Modeling

This example shows how to represent a geometry that includes rounded corners (fillets)
using Constructive Solid Geometry (CSG) modeling. You learn how to draw several
overlapping solid objects, and specify how these objects should combine to produce the
desired geometry.

Start the PDE app using pdetool and turn on the grid and the “snap-to-grid” feature
using the Options menu. Also, change the grid spacing to -1.5:0.1:1.5 for the x-axis
and -1:0.1:1 for the y-axis.

Select Rectangle/square from the Draw menu or click the button with the rectangle
icon. Then draw a rectangle with a width of 2 and a height of 1 using the mouse, starting
at (–1,0.5). To get the round corners, add circles, one in each corner. The circles should
have a radius of 0.2 and centers at a distance that is 0.2 units from the left/right and
lower/upper rectangle boundaries ((–0.8,–0.3), (–0.8,0.3), (0.8,–0.3), and (0.8,0.3)). To
draw several circles, double-click the button for drawing ellipses/circles (centered). Then
draw the circles using the right mouse button or Ctrl+click starting at the circle centers.
Finally, at each of the rectangle corners, draw four small squares with a side of 0.2.

The following figure shows the complete drawing.
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Edit the set formula. To get rounded corners, subtract the small squares from the
rectangle and then add the circles. As a set formula, express this as

R1-(SQ1+SQ2+SQ3+SQ4)+C1+C2+C3+C4 

Enter the set formula into the edit box at the top of the PDE app. Then enter the
Boundary mode by clicking the ∂Ω button or by selecting the Boundary Mode option
from the Boundary menu. The CSG model is now decomposed using the set formula,
and you get a rectangle with rounded corners, as shown in the following figure.



2 Setting Up Your PDE

2-10

Because of the intersection of the solid objects used in the initial CSG model, a number of
subdomain borders remain. They are drawn using gray lines. If this is a model of, e.g., a
homogeneous plate, you can remove these borders. Select the Remove All Subdomain
Borders option from the Boundary menu. The subdomain borders are removed and the
model of the plate is now complete.
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Solve Problems Using PDEModel Objects
1 Put your problem in the correct form for Partial Differential Equation Toolbox

solvers. For details, see “Types of PDE Problems You Can Solve” on page 1-3. If you
need to convert your problem to divergence form, see “Put Equations in Divergence
Form” on page 2-55.

2 Create a PDEModel model container. For scalar PDEs, use createpde with no
arguments.

model = createpde;

If N is the number of equations in your system, use createpde with input argument
N.

model = createpde(N);

3 Import the geometry into model. For details, see “Create and View 3-D Geometry”
on page 2-44 or “Create 2-D Geometry” on page 2-14. For example:

importGeometry(model,'geometry.stl'); % importGeometry for 3-D

geometryFromEdges(model,g); % geometryFromEdges for 2-D

4 View the geometry so that you know the labels of the faces. To see labels of a 3-D
model, you might need to rotate the model, or make it transparent, or zoom in on
it. See “Create and View 3-D Geometry” on page 2-44. For a 2-D example, see
“Identify Boundary Labels” on page 2-122. For example:

pdegplot(model,'FaceLabels','on') % 'FaceLabels' for 3-D

pdegplot(model,'EdgeLabels','on') % 'EdgeLabels' for 2-D

5 Create the boundary conditions. For details, see “Specify Boundary Conditions
Objects” on page 2-127. For example:

applyBoundaryCondition(model,'Face',[2,3,5],'u',[0,0]); % 'Face' for 3-D

applyBoundaryCondition(model,'Edge',[1,4],'g',1,'q',eye(2)); % 'Edge' for 2-D

For more information on boundary conditions, see “Boundary Conditions”,
specifically:

• To view the forms of boundary conditions, see “Classification of Boundary
Conditions” on page 2-125.

• To specify constant boundary conditions, see “Specify Constant Boundary
Conditions” on page 2-129 and “Solve PDEs with Constant Boundary
Conditions” on page 2-133.
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• To specify nonconstant boundary conditions, see “Specify Nonconstant Boundary
Conditions” on page 2-138 and “Solve PDEs with Nonconstant Boundary
Conditions” on page 2-140.

6 Create the PDE coefficients. For example:

f = [1;2];

a = 0;

c = [1;3;5];

• You can specify coefficients as numeric, string functions, or functions in 2-D
functional form or 3-D functional form. For a 2-D example, see “Solve PDE with
Coefficients in Functional Form” on page 2-72.

• For systems of PDEs, each coefficient f, c, a, and d has a specific format. See
“f Coefficient for Systems” on page 2-92, “c Coefficient for Systems” on page
2-95, and “a or d Coefficient for Systems” on page 2-113.

For all information on coefficients, see “PDE Coefficients”.
7 For hyperbolic or parabolic equations, create an initial condition. For nonlinear

elliptic problems, create an initial guess. See “Initial Conditions” on page 2-116.
8 Create the mesh. To obtain a nondefault mesh, use generateMesh name-value

pairs. For example:

generateMesh(model);

9 Call the appropriate solver. For example:

u = assempde(model,c,a,f);

• For elliptic problems whose coefficients do not depend on the solution u, use
assempde.

• For elliptic problems whose coefficients depend on the solution u, use pdenonlin.
• For parabolic problems, use parabolic.
• For hyperbolic problems, use hyperbolic.
• For eigenvalue problems, use pdeeig.

For definitions of the problems that these solvers address, see “Types of PDE
Problems You Can Solve” on page 1-3.

10 Examine the solution. See “Plot 3-D Solutions” on page 3-126 or pdeplot.
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See Also
applyBoundaryCondition | createpde | generateMesh | geometryFromEdges |
importGeometry | pdegplot | pdeplot | pdeplot3D

Related Examples
• “Plot 3-D Solutions” on page 3-126

More About
• “Functions That Support 3-D Geometry” on page 2-54
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Create 2-D Geometry

In this section...

“Three Ways to Create 2-D Geometry” on page 2-14
“How to Decide on a Geometry Creation Method” on page 2-14

Three Ways to Create 2-D Geometry

There are three ways to create 2-D geometry. Two are based on CSG (Constructive Solid
Geometry) models, which combine basic shapes.

• Use the PDE app to draw basic shapes (rectangles, circles, ellipses, and polygons) and
combine them with set intersection and unions to obtain the final geometry. You can
then export the geometry to your MATLAB workspace, or continue to work in the app.
For details, see “Open the PDE App” on page 2-3, “Specify Geometry Using a CSG
Model” on page 2-5, “Select Graphical Objects Representing Your Geometry” on page
2-7, and “Rounded Corners Using CSG Modeling” on page 2-8.

• Use the decsg function to create geometry at the command line as follows:

• Specify matrices that represent the basic shapes (rectangles, circles, ellipses, and
polygons).

• Give each shape a label.
• Specify a “set formula” that describes the intersections, unions, and set differences

of the basic shapes.

decsg allows you to describe any geometry that you can make from the basic shapes
(rectangles, circles, ellipses, and polygons). For details, see “Create CSG Geometry at
the Command Line” on page 2-16.

• Specify a function that describes the geometry. The function must be in the form
described in “Create Geometry Using a Geometry Function” on page 2-23.

How to Decide on a Geometry Creation Method

This table lists the advantages and disadvantages of each method for creating geometry.
In general, choose the lowest-numbered method:

1 Use the PDE app if you can (simple geometry).



 Create 2-D Geometry

2-15

2 Use the decsg function for geometries that are somewhat complex but can be
described in terms of the basic shapes.

3 Use a geometry description function if you cannot use the other methods.

Method Advantages Disadvantages

Simple click-and-drag
interface

Can be tedious to specify
exact shapes

See the geometry as you
create it

Can fail for complex figures

Instant feedback on
subdomains, connectedness

No control of edge or
subdomain labels

PDE app

  Only basic shapes as
building blocks: rectangles,
circles, ellipses, and polygons

Control all basic geometry
elements

Cannot see the geometry as
you create it

  No control of edge or
subdomain labels

decsg

  Only basic shapes as
building blocks: rectangles,
circles, ellipses, and polygons

Specify any shape Cannot see the geometry as
you create it

Geometry function

Specify edge and subdomain
labels

Need to write a function
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Create CSG Geometry at the Command Line

In this section...

“Three Elements of Geometry” on page 2-16
“Create Basic Shapes” on page 2-16
“Create Names for the Basic Shapes” on page 2-18
“Set Formula” on page 2-19
“Create Geometry and Remove Subdomains” on page 2-19
“Decomposed Geometry Data Structure” on page 2-21

Three Elements of Geometry

For basic information on 2-D geometry construction, see “Create 2-D Geometry” on page
2-14

To describe your geometry through Constructive Solid Geometry (CSG) modeling, use
three data structures.

1 “Create Basic Shapes” on page 2-16 A matrix whose columns describe the basic
shapes. When you export geometry from the PDE app, this matrix has the default
name gd (geometry description).

2 “Create Names for the Basic Shapes” on page 2-18 A matrix whose columns
contain names for the basic shapes. Pad the columns with zeros or 32 (blanks) so
that every column has the same length.

3 “Set Formula” on page 2-19 A string describing the unions, intersections, and set
differences of the basic shapes that make the geometry.

Create Basic Shapes

To create basic shapes at the command line, create a matrix whose columns each describe
a basic shape. If necessary, add extra zeros to some columns so that all columns have the
same length. Write each column using the following encoding.

Circle

Row Value

1 1 (indicates a circle)
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Row Value

2 x-coordinate of circle center
3 y-coordinate of circle center
4 Radius (strictly positive)

Polygon

Row Value

1 2 (indicates a polygon)
2 Number of line segments n
3 through 3+n-1 x-coordinate of edge starting points
3+n through 2*n+2 y-coordinate of edge starting points

Note: Your polygon cannot contain any self-intersections. To check whether your polygon
satisfies this restriction, use the csgchk function.

Rectangle

Row Value

1 3 (indicates a rectangle)
2 4 (Number of line segments)
3 through 6 x-coordinate of edge starting points
7 through 10 y-coordinate of edge starting points

The encoding of a rectangle is the same as that of a polygon, except that the first row is 3
instead of 2.

Ellipse

Row Value

1 4 (indicates an ellipse)
2 x-coordinate of ellipse center
3 y-coordinate of ellipse center
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Row Value

4 First semiaxis length (strictly positive)
5 Second semiaxis length (strictly positive)
6 Angle in radians from x axis to first semiaxis

For example, this matrix has a rectangle with a circular end cap and another circular
excision:

% Create a rectangle and two adjoining circles

rect1 = [3

    4

    -1

    1

    1

    -1

    0

    0

    -0.5

    -0.5];

C1 = [1

    1

    -0.25

    0.25];

C2 = [1

    -1

    -0.25

    0.25];

% Append extra zeros to the circles

% so they have the same number of rows as the rectangle

C1 = [C1;zeros(length(rect1) - length(C1),1)];

C2 = [C2;zeros(length(rect1) - length(C2),1)];

% Combine the shapes into one matrix

gd = [rect1,C1,C2];

Create Names for the Basic Shapes

In order to create a formula describing the unions and intersections of basic shapes, you
need a name for each basic shape. Give the names as a matrix whose columns contain the
names of the corresponding columns in the basic shape matrix. Pad the columns with 0
or 32 if necessary so that each has the same length.
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One easy way to create the names is by specifying a character array whose rows contain
the names, and then taking the transpose. Use the char function to create the array.
char pads the rows as needed so all have the same length. Continuing the example,

% Give names for the three shapes

ns = char('rect1','C1','C2');

ns = ns';

Set Formula

Obtain the final geometry by writing a string that describes the unions and intersections
of basic shapes. Use + for union, * for intersection, - for set difference, and parentheses
for grouping. + and * have the same grouping precedence. - has higher grouping
precedence.

Continuing the example,

% Specify the union of the rectangle and C1, and subtract C2

sf = '(rect1+C1)-C2';

Create Geometry and Remove Subdomains

After you have created the basic shapes, given them names, and specified a set formula,
create the geometry using decsg. Often, you also remove some or all of the resulting
subdomain boundaries. Completing the example,

[dl,bt] = decsg(gd,sf,ns); % combines the basic shapes using the set formula

View the geometry with and without subdomain removal.

pdegplot(dl,'EdgeLabels','on','SubdomainLabels','on')

xlim([-1.5,1.5])

axis equal
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Remove the subdomains.

[dl2,bt2] = csgdel(dl,bt); % removes subdomain boundaries

figure

pdegplot(dl2,'EdgeLabels','on','SubdomainLabels','on')

xlim([-1.5,1.5])

axis equal
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Decomposed Geometry Data Structure

A decomposed geometry matrix has the following encoding. Each column of the matrix
corresponds to one boundary segment. Any 0 entry means no encoding is necessary for
this row. So, for example, if only line segments appear in the matrix, then the matrix has
7 rows. But if there is also a circular segment, then the matrix has 9 rows. The extra two
rows of the line columns are filled with 0.

Row Circle Line Ellipse

1 1 2 4

2 Starting x coordinate Starting x coordinate Starting x coordinate
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Row Circle Line Ellipse

3 Ending x coordinate Ending x coordinate Ending x coordinate
4 Starting y coordinate Starting y coordinate Starting y coordinate
5 Ending y coordinate Ending y coordinate Ending y coordinate
6 Region label to left of

segment, with direction
induced by start and
end points (0 is exterior
label)

Region label to left of
segment, with direction
induced by start and
end points (0 is exterior
label)

Region label to left of
segment, with direction
induced by start and
end points (0 is exterior
label)

7 Region label to right of
segment, with direction
induced by start and
end points (0 is exterior
label)

Region label to right of
segment, with direction
induced by start and
end points (0 is exterior
label)

Region label to right of
segment, with direction
induced by start and
end points (0 is exterior
label)

8 x coordinate of circle
center

0 x coordinate of ellipse
center

9 y coordinate of circle
center

0 y coordinate of ellipse
center

10 0 0 Length of first semiaxis
11 0 0 Length of second

semiaxis
12 0 0 Angle in radians

between x axis and first
semiaxis
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Create Geometry Using a Geometry Function

In this section...

“Required Syntax” on page 2-23
“Geometry Function for a Circle” on page 2-26
“Arc Length Calculations for a Geometry Function” on page 2-28
“Geometry Function Example with Subdomains and a Hole” on page 2-41

Required Syntax

For basic information on 2-D geometry construction, see “Create 2-D Geometry” on page
2-14

A geometry function describes the curves that bound the geometry regions. A curve is
a parametrized function (x(t),y(t)). The variable t ranges over a fixed interval. For best
results, t should be proportional to arc length plus a constant.

For each region you should have at least two curves. For example, the 'circleg'
geometry function, which ships with the toolbox, uses four curves to describe a circle.

Curves can intersect only at the beginning or end of parameter intervals.

Toolbox functions query your geometry function by passing in 0, 1, or 2 arguments.
Conditionalize your geometry function based on the number of input arguments to return
the following:

Number of Input Arguments Returned Data

0 (ne = pdegeom) ne is the number of edges in the geometry.
1 (d = pdegeom(bs)) bs is a vector of edge segments. Your function returns

d as a matrix with one column for each edge segment
specified in bs. The rows of d are:

1 Start parameter value
2 End parameter value
3 Left region label, where “left” is with respect to

the direction from the start to end parameter
value
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Number of Input Arguments Returned Data

4 Right region label

Region label is the same as subdomain number. The
region label of the exterior of the geometry is 0.

2 ([x,y] = pdegeom(bs,s)) s is an array of arc lengths, and bs is a scalar or
an array the same size as s giving edge numbers. If
bs is a scalar, then it applies to every element in s.
Your function returns x and y, which are the x and
y coordinates of the edge segments specified in bs at
parameter value s. The x and y arrays have the same
size as s.

Relation Between Parameterization and Region Labels

This figure shows how the direction of parameter increase relates to label numbering.
The arrows in the following figure show the directions of increasing parameter values.
The black dots indicate curve beginning and end points. The red numbers indicate region
labels. The red 0 in the center of the figure indicates that the center square is a hole.

• The arrows by curves 1 and 2 show region 1 to the left and region 0 to the right.
• The arrows by curves 3 and 4 show region 0 to the left and region 1 to the right.
• The arrows by curves 5 and 6 show region 0 to the left and region 1 to the right.
• The arrows by curves 7 and 8 show region 1 to the left and region 0 to the right.
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Code for Creating the Figure

xs = [0,1,1,0,0];

xt = [0.25,0.75,0.75,0.25,0.25];

ys = [0,0,1,1,0];

yt = [0.25,0.25,0.75,0.75,0.25];

plot(xs,ys,'b-')

hold on

axis equal

ylim([-0.1,1.1])

plot(xt,yt,'b-')

plot(xs,ys,'k.','MarkerSize',12)

plot(xt,yt,'k.','MarkerSize',12)

text(-0.1,0.5,'0','Color','r')
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text(0.5,0.5,'0','Color','r')

text(1.1,0.5,'0','Color','r')

text(0.15,0.15,'1','Color','r')

text(0.85,0.85,'1','Color','r')

text(0.5,0,'1')

text(0.99,0.5,'2')

text(0.5,1,'3')

text(-0.01,0.5,'4')

text(0.5,0.25,'5')

text(0.74,0.5,'6')

text(0.5,0.75,'7')

text(0.24,0.5,'8')

annotation('arrow',[0.6,0.7],[0.18,0.18])

annotation('arrow',[0.6,0.7],[0.86,0.86])

annotation('arrow',[0.26,0.26],[0.7,0.8])

annotation('arrow',[0.77,0.77],[0.7,0.8])

annotation('arrow',[0.53,0.63],[0.35,0.35])

annotation('arrow',[0.53,0.63],[0.69,0.69])

annotation('arrow',[0.39,0.39],[0.55,0.65])

annotation('arrow',[0.645,0.645],[0.55,0.65])

Geometry Function for a Circle

This example shows how to use a geometry function to create a circular region. Of course,
you could just as easily use a circle basic shape.

You can parametrize a circle with radius 1 centered at the origin (0,0) as follows:

x t

y t

t

=

=

£ £

cos( )

sin( )

.0 2p

A geometry function needs to have at least two segments. So break up the circle into four
segments: 0 ≤ t ≤ π/2, π/2 ≤ t ≤ π, π ≤ t ≤ 3π/2, and 3π/2 ≤ t ≤ 2π.

Now that you have a parametrization, write the geometry function. Save this function
file as circlefunction.m on your MATLAB path.

function [x,y] = circlefunction(bs,s)
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% Create a unit circle centered at (0,0) using four segments.

switch nargin

    case 0

        x = 4; % four edge segments

        return

    case 1

        A = [0,pi/2,pi,3*pi/2; % start parameter values

            pi/2,pi,3*pi/2,2*pi; % end parameter values

            1,1,1,1; % region label to left

            0,0,0,0]; % region label to right

        x = A(:,bs); % return requested columns

        return

    case 2

        x = cos(s);

        y = sin(s);

end

This geometry was particularly simple to create because the parameterization did not
change depending on the segment number.

Visualize the geometry, edge numbers, and domain label.

pdegplot(@circlefunction,'EdgeLabels','on','SubdomainLabels','on')

axis equal



2 Setting Up Your PDE

2-28

The built-in function circleg gives a slightly different parameterization of the circle.
You might find it instructive to compare the two approaches.

Arc Length Calculations for a Geometry Function

This example shows how to create a cardioid geometry using four distinct techniques.
The techniques are ways to parametrize your geometry using arc length calculations.

The cardioid satisfies the equation

r = +2 1( cos( )).F
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ezpolar('2*(1+cos(Phi))')

This example shows four approaches to giving a parametrization of the cardioid as a
function of arc length.

• Use the pdearcl function with a polygonal approximation to the geometry. This
approach is general, accurate enough, and computationally fast.

• Use the integral and fzero functions to compute the arc length. This approach
is more computationally costly, but can be accurate without you having to choose an
arbitrary polygon.

• Use an analytic calculation of the arc length. This approach is probably the best when
it applies, but there are many cases where it does not apply.



2 Setting Up Your PDE

2-30

• Use a parametrization that is not proportional to arc length plus a constant. This
approach is simplest, but can yield a distorted mesh that does not give the most
accurate solution to your PDE problem.

Polygonal Approximation

The finite element method uses a triangular mesh to approximate the solution to a
PDE numerically. So there is no loss in accuracy by taking a sufficiently fine polygonal
approximation to the geometry. The pdearcl function maps between parametrization
and arc length in a form well-suited to a geometry function. Here is a geometry function
for the cardioid.

function [x,y] = cardioid1(bs,s) 

%CARDIOID1 Geometry File defining the geometry of a cardioid. 

if nargin == 0  

  x = 4; % four segments in boundary

  return 

end

if nargin == 1

  dl = [0    pi/2   pi       3*pi/2

      pi/2   pi     3*pi/2   2*pi

      1      1      1        1

      0      0      0        0];

  x = dl(:,bs);   

  return 

end 

x = zeros(size(s)); 

y = zeros(size(s)); 

if numel(bs) == 1 % bs might need scalar expansion

  bs = bs*ones(size(s)); % expand bs

end

nth = 400; % fine polygon, 100 segments per quadrant

th = linspace(0,2*pi,nth); % parametrization

r = 2*(1+cos(th));

xt = r.*cos(th); % Points for interpolation of arc lengths

yt = r.*sin(th);

% Compute parameters corresponding to the arc length values in s

th = pdearcl(th,[xt;yt],s,0,2*pi); % th contains the parameters

% Now compute x and y for the parameters th

r = 2*(1+cos(th));
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x(:) = r.*cos(th);

y(:) = r.*sin(th); 

Plot the geometry function.

pdegplot('cardioid1','EdgeLabels','on')

axis equal

With 400 line segments, the geometry looks smooth.

The built-in cardg function gives a slightly different version of this technique.
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Integral for Arc Length

You can write an integral for the arc length of a curve. If the parametrization is in terms
of x(u) and y(u), then the arclength s(t) is

s t
dx

du

dy

du
du

t

( ) .= Ê
ËÁ

ˆ
¯̃

+ Ê
ËÁ

ˆ
¯̃Ú

2 2

0

So for a given value s0, you can find t as the root of the equation s(t) = s0. The fzero
function solves this type of nonlinear equation.

For the present example of a cardioid, here is the calculation.

function [x,y] = cardioid2(bs,s) 

%CARDIOID2 Geometry file defining the geometry of a cardioid. 

if nargin == 0  

  x = 4; % four segments in boundary

  return 

end

if nargin == 1

  dl = [0    pi/2   pi       3*pi/2

      pi/2   pi     3*pi/2   2*pi

      1      1      1        1

      0      0      0        0];

  x = dl(:,bs);   

  return 

end 

x = zeros(size(s)); 

y = zeros(size(s)); 

if numel(bs) == 1 % bs might need scalar expansion

  bs = bs*ones(size(s)); % expand bs

end

cbs = find(bs < 3); % upper half of cardiod

fun = @(ss)integral(@(t)sqrt(4*(1+cos(t)).^2 + 4*sin(t).^2),0,ss);

sscale  = fun(pi);

for ii = cbs(:)' % ensure a row vector

    myfun = @(rr)fun(rr)-s(ii)*sscale/pi;
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    theta = fzero(myfun,0,pi);

    r = 2*(1 + cos(theta));

    x(ii) = r*cos(theta);

    y(ii) = r*sin(theta);

end

cbs = find(bs >= 3); % Lower half of cardioid

s(cbs) = 2*pi - s(cbs);

for ii = cbs(:)'

    theta = fzero(@(rr)fun(rr)-s(ii)*sscale/pi,0,pi);

    r = 2*(1 + cos(theta));

    x(ii) = r*cos(theta);

    y(ii) = -r*sin(theta);

end

Plot the geometry function.

pdegplot('cardioid1','EdgeLabels','on')

axis equal
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The geometry looks identical to the polygonal approximation. This integral version takes
much longer to calculate than the polygonal version.

Analytic Arc Length

If you are handy with integrals, or have Symbolic Math Toolbox™, you can find an
analytic expression for the arc length as a function of the parametrization. Then you
can give the parametrization in terms of arc length. Here is an approach using Symbolic
Math Toolbox.

syms t real

r = 2*(1+cos(t));

x = r*cos(t);

y = r*sin(t);
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arcl = simplify(sqrt(diff(x)^2+diff(y)^2));

s = int(arcl,t,0,t,'IgnoreAnalyticConstraints',true)

s =

 

8*sin(t/2)

So you see that, in terms of arclength s, the parameter t is t = 2*asin(s/8) where s
ranges from 0 to 8, corresponding to t ranging from 0 to pi. For s between 8 and 16, by
the symmetry of the cardioid, t = pi + 2*asin((16-s)/8).

Furthermore, you can express x and y in terms of s by the following analytic calculations.

syms s real

th = 2*asin(s/8);

r = 2*(1+cos(th));

r = expand(r)

r =

 

4 - s^2/16

x = r*cos(th);

x = simplify(expand(x))

x =

 

s^4/512 - (3*s^2)/16 + 4

y = r*sin(th);

y = simplify(expand(y))

y =

 

(s*(64 - s^2)^(3/2))/512

Now that you have analytic expressions for x and y in terms of the arclength s, you can
write the geometry function.

function [x,y] = cardioid3(bs,s) 

%CARDIOID3 Geometry file defining the geometry of a cardioid. 

if nargin == 0  

  x = 4; % four segments in boundary
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  return 

end

if nargin == 1

dl = [ 0   4   8  12

      4   8  12  16

      1   1   2   2

      0   0   0   0];

  x = dl(:,bs);   

  return 

end 

x = zeros(size(s)); 

y = zeros(size(s)); 

if numel(bs) == 1 % bs might need scalar expansion

  bs = bs*ones(size(s)); % expand bs

end

cbs = find(bs < 3); % upper half of cardiod

x(cbs) = s(cbs).^4/512 - 3*s(cbs).^2/16 + 4;

y(cbs) = s(cbs).*(64 - s(cbs).^2).^(3/2)/512;

cbs = find(bs >= 3); % lower half

s(cbs) = 16 - s(cbs); % take the reflection

x(cbs) = s(cbs).^4/512 - 3*s(cbs).^2/16 + 4;

y(cbs) = -s(cbs).*(64 - s(cbs).^2).^(3/2)/512; % negate y

Plot the geometry function.

pdegplot('cardioid3','EdgeLabels','on')

axis equal
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This analytic geometry looks slightly smoother than the previous versions. However, the
difference is inconsequential in terms of calculations.

Geometry Not Proportional to Arc Length

You can write a geometry function where the parameter is not proportional to arc length.
This can yield a distorted mesh.

function [x,y] = cardioid4(bs,s) 

%CARDIOID4 Geometry file defining the geometry of a cardioid. 

if nargin == 0  

  x = 4; % four segments in boundary

  return 
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end

if nargin == 1

  dl = [0    pi/2   pi       3*pi/2

      pi/2   pi     3*pi/2   2*pi

      1      1      1        1

      0      0      0        0];

  x = dl(:,bs);   

  return 

end 

r = 2*(1+cos(s)); % s is not proportional to arc length

x = r.*cos(s);

y = r.*sin(s);

Plot the geometry function.

pdegplot('cardioid4','EdgeLabels','on')

axis equal
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The labels are not evenly spaced on the edges because the parameter is not proportional
to arc length.

Examine the default mesh for each of the four methods of creating geometry.

subplot(2,2,1)

[p,e,t] = initmesh(@cardioid1);

pdeplot(p,e,t)

title('Polygons')

axis equal

subplot(2,2,2)

[p,e,t] = initmesh(@cardioid2);

pdeplot(p,e,t)

title('Integral')
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axis equal

subplot(2,2,3)

[p,e,t] = initmesh(@cardioid3);

pdeplot(p,e,t)

title('Analytic')

axis equal

subplot(2,2,4)

[p,e,t] = initmesh(@cardioid4);

pdeplot(p,e,t)

title('Distorted')

axis equal
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While the “Distorted” mesh looks a bit less regular than the other meshes (it has some
very narrow triangles near the cusp of the cardioid), all of the meshes appear to be
usable.

Geometry Function Example with Subdomains and a Hole

This example shows how to create a geometry file for a region with subdomains and
a hole. It uses the “Analytic” cardioid example from “Arc Length Calculations for a
Geometry Function” on page 2-28 and a variant of the circle function from “Geometry
Function for a Circle” on page 2-26.

The geometry consists of an outer cardioid that is divided into an upper half called
subdomain 1 and a lower half called subdomain 2. Also, the lower half has a circular hole
centered at (1,–1) and of radius 1/2. Here is the code of the geometry function.

function [x,y] = cardg3(bs,s) 

% CARDG3 Geometry File defining the geometry of a cardioid with two

% subregions and a hole.

if nargin == 0  

  x = 9; % 9 segments

  return 

end

if nargin == 1

    % Outer cardioid

    dl = [ 0   4   8  12

      4   8  12  16

      1   1   2   2 % Region 1 to the left in the upper half, 2 in the lower

      0   0   0   0];

    % Dividing line between top and bottom

    dl2 = [0

        4

        1 % Region 1 to the left

        2]; % Region 2 to the right

    % Inner circular hole

    dl3 = [  0      pi/2   pi       3*pi/2

          pi/2   pi     3*pi/2   2*pi

          0      0      0        0 % To the left is empty

          2      2      2        2]; % To the right is region 2

    % Combine the three edge matrices

    dl = [dl,dl2,dl3];
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    x = dl(:,bs);   

    return 

end 

x = zeros(size(s)); 

y = zeros(size(s)); 

if numel(bs) == 1 % Does bs need scalar expansion?

    bs = bs*ones(size(s)); % Expand bs

end

cbs = find(bs < 3); % Upper half of cardiod

x(cbs) = s(cbs).^4/512 - 3*s(cbs).^2/16 + 4;

y(cbs) = s(cbs).*(64 - s(cbs).^2).^(3/2)/512;

cbs = find(bs >= 3 & bs <= 4); % Lower half of cardioid

s(cbs) = 16 - s(cbs);

x(cbs) = s(cbs).^4/512 - 3*s(cbs).^2/16 + 4;

y(cbs) = -s(cbs).*(64 - s(cbs).^2).^(3/2)/512;

cbs = find(bs == 5); % Index of straight line

x(cbs) = s(cbs);

y(cbs) = zeros(size(cbs));

cbs = find(bs > 5); % Inner circle radius 0.25 center (1,-1)

x(cbs) = 1 + 0.25*cos(s(cbs));

y(cbs) = -1 + 0.25*sin(s(cbs));

Plot the geometry, including edge labels and subdomain labels.

pdegplot(@cardg3,'EdgeLabels','on','SubdomainLabels','on')

axis equal
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Create and View 3-D Geometry

To create 3-D geometry, import an STL file.

model = createpde;

importGeometry(model,'geometryfile.stl');

Generally, you create the STL file by exporting from a CAD system, such as SolidWorks®.
For best results, export a fine (not coarse) STL file in binary (not ASCII) format.

After importing, view the geometry using the pdegplot function. To see the face IDs, set
the FaceLabels name-value pair to 'on'.

View the geometry examples included with Partial Differential Equation Toolbox.

model = createpde;

importGeometry(model,'Torus.stl');

pdegplot(model,'FaceLabels','on')
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model = createpde;

importGeometry(model,'Block.stl');

pdegplot(model,'FaceLabels','on')
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model = createpde;

importGeometry(model,'Plate10x10x1.stl');

pdegplot(model,'FaceLabels','on')
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model = createpde;

importGeometry(model,'Tetrahedron.stl');

pdegplot(model,'FaceLabels','on')
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model = createpde;

importGeometry(model,'BracketWithHole.stl');

pdegplot(model,'FaceLabels','on')
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model = createpde;

importGeometry(model,'BracketTwoHoles.stl');

pdegplot(model,'FaceLabels','on')
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To see hidden portions of the geometry, rotate the figure using the Rotate 3D button
. You can rotate the angle bracket to obtain the following view.
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model = createpde;

importGeometry(model,'ForearmLink.stl');

h = pdegplot(model,'FaceLabels','on');
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To view hidden faces, set the FaceAlpha property to a value less than 1, such as 0.5.

h(1).FaceAlpha = 0.5;
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Related Examples
• “Solve Problems Using PDEModel Objects” on page 2-11
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Functions That Support 3-D Geometry

The following functions support 3-D geometry.

Principal Solver Functions Utility and Plotting Functions

assempde assema

hyperbolic assemb

parabolic pdegplot

pdeeig pdemesh

pdenonlin pdeplot3D

Many Partial Differential Equation Toolbox functions are inherently for 2-D geometry,
such as pdecirc, and so do not support 3-D geometry. For functions that are not
inherently 2-D but do not support 3-D geometry, you can still obtain 3-D results by using
these workarounds.

Functions Workaround

adaptmesh None.
jigglemesh, refinemesh Use the Hmax name-value pair in generateMesh

when creating a mesh.
pdegrad, pdecgrad Use interpolation (evaluate) and finite

differences, as in “Plots of Gradients and
Streamlines” on page 3-142.

pdecont, pdesurf Use geometry slices and interpolation, as in “2-D
Slices Through 3-D Geometry” on page 3-130.

poiasma, poicalc, poiindex,
poimesh, poisolv

Use assempde.

Related Examples
• “Solve Problems Using PDEModel Objects” on page 2-11
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Put Equations in Divergence Form

In this section...

“Coefficient Matching for Divergence Form” on page 2-55
“Boundary Conditions Can Affect the c Coefficient” on page 2-56
“Some Equations Cannot Be Converted” on page 2-57

Coefficient Matching for Divergence Form

As explained in “Types of PDE Problems You Can Solve” on page 1-3, Partial Differential
Equation Toolbox solvers address equations of the form

-— ◊ —( ) + =c u au f ,

or variants that have derivatives with respect to time, or that have eigenvalues, or are
systems of equations. These equations are in divergence form, where the differential
operator begins —· . The coefficients a, c, and f are functions of position (x, y, z) and
possibly of the solution u.

However, you can have equations in a form with all the derivatives explicitly expanded,
such as
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In order to transform this expanded equation into toolbox format, you can try to match
the coefficients of the equation in divergence form to the expanded form. In divergence
form, if
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Matching coefficients in the uxx and uyy terms in -— ◊ —( )c u  to the equation, you get
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Then looking at the coefficients of ux and uy, which should be zero, you get
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This completes the conversion of the equation to the divergence form

-— ◊ —( ) =c u 0.

Boundary Conditions Can Affect the c Coefficient

The c coefficient appears in the generalized Neumann condition
r

n c u qu g· .—( ) + =

So when you derive a divergence form of the c coefficient, keep in mind that this
coefficient appears elsewhere.

For example, consider the 2-D Poisson equation –uxx – uyy = f. Obviously, you can take
c = 1. But there are other c matrices that lead to the same equation: any that have
c(2) + c(3) = 0.
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So there is freedom in choosing a c matrix. If you have a Neumann boundary condition
such as

r

n c u· ,—( ) = 2

the boundary condition depends on which version of c you use. In this case, make sure
that you take a version of c that is compatible with both the equation and the boundary
condition.

Some Equations Cannot Be Converted

Sometimes it is not possible to find a conversion to a divergence form such as

-— ◊ —( ) + =c u au f .

For example, consider the equation
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By simple coefficient matching, you see that the coefficients c1 and c4 are –1 and –1/2
respectively. However, there are no c2 and c3 that satisfy the remaining equations,
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Systems of PDEs

As described in “Types of PDE Problems You Can Solve” on page 1-3, Partial Differential
Equation Toolbox can solve systems of PDEs. This means you can have N coupled PDEs,
with coupled boundary conditions. The solvers such as assempde and hyperbolic can
solve systems of PDEs with any number N of components.

Scalar PDEs are those with N = 1, meaning just one PDE. Systems of PDEs generally
means N > 1. The documentation sometimes refers to systems as multidimensional PDEs
or as PDEs with vector solution u.

In all cases, PDE systems have a single geometry and mesh. It is only N, the number of
equations, that can vary.



 Scalar PDE Coefficients

2-59

Scalar PDE Coefficients

A scalar PDE is one of the following:

• Elliptic

-— ◊ —( ) + =c u au f .

• Parabolic

d c au f
u

t
u

∂

∂
—-— ◊ ( ) + = .

• Hyperbolic

d
u

t
c u au f

∂

∂
— ◊ —( ) + =-

2

2
.

• Eigenvalue

-— ◊ —( ) + =c u au dul .

In all cases, the coefficients d, c, a, and f can be functions of position (x and y and, for 3-
D geometry, z) and the subdomain index. For all cases except eigenvalue, the coefficients
can also depend on the solution u and its gradient. And for parabolic and hyperbolic
equations, the coefficients can also depend on time.

The question is how to represent the coefficients for the toolbox.

There are three ways of representing each coefficient. You can use different ways for
different coefficients.

• Numeric — If a coefficient is numeric, give the value.
• String formula — See “Specify Scalar PDE Coefficients in String Form” on page

2-61.
• MATLAB function — See “Specify 2-D Scalar Coefficients in Function Form” on page

2-67.

For an example incorporating each way to represent coefficients, see “Solve PDE with
Coefficients in Functional Form” on page 2-72.
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Note: If any coefficient depends on time or on the solution u or its gradient, then that
coefficient should be NaN when either time or the solution u is NaN. This is the way that
solvers check to see if the equation depends on time or on the solution.
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Specify Scalar PDE Coefficients in String Form

Write a text expression using these conventions:

• 'x' — x-coordinate
• 'y' — y-coordinate
• 'z' — z-coordinate (3-D geometry)
• 'u' — Solution of equation
• 'ux' — Derivative of u in the x-direction
• 'uy' — Derivative of u in the y-direction
• 'uz' — Derivative of u in the z-direction (3-D geometry)
• 't' — Time (parabolic and hyperbolic equations)
• 'sd' — Subdomain number (not used in 3-D geometry)

For example, you could use this string to represent a coefficient:

'(x+y)./(x.^2 + y.^2 + 1) + 3 + sin(t)./(1+u.^4)'

Note: Use .*, ./, and .^ for multiplication, division, and exponentiation operations.
The text expressions operate on row vectors, so the operations must make sense for row
vectors. For 2-D geometry, the row vectors are the values at the triangle centroids in the
mesh.

You can write MATLAB functions for coefficients as well as plain text expressions. For
example, suppose your coefficient f is given by the file fcoeff.m:

function f = fcoeff(x,y,t,sd)

f = (x.*y)./(1+x.^2+y.^2); % f on subdomain 1

f = f + log(1+t); % include time

r = (sd == 2); % subdomain 2

f2 = cos(x+y); % coefficient on subdomain 2 

f(r) = f2(r); % f on subdomain 2

Represent this function in the parabolic solver, for example:

u1 = parabolic(u0,tlist,b,p,e,t,c,a,'fcoeff(x,y,t,sd)',d)
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Caution In function form, t represents triangles, and time represents time. In string
form, t represents time, and triangles do not enter into the form.

There is a simple way to write a text expression for multiple subdomains without using
'sd' or a function. Separate the formulas for the different subdomains with the '!'
character. Generally use the same number of expressions as subdomains. However, if an
expression does not depend on the subdomain number, you can give just one expression.

For example, an expression for an input (a, c, f, or d) with three subdomains:
'2+tanh(x.*y)!cosh(x)./(1+x.^2+y.^2)!x.^2+y.^2'

The coefficient c is a 2-by-2 matrix. You can give c in any of the following forms:

• Scalar or single string — The software interprets c as a diagonal matrix:

c

c

0

0

Ê

Ë
Á

ˆ

¯
˜

• Two-element column vector or two-row text array — The software interprets c as a
diagonal matrix:

c

c
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˜

• Three-element column vector or three-row text array — The software interprets c as a
symmetric matrix:

c c
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• Four-element column vector or four-row text array — The software interprets c as a
full matrix:

c c

c c

( ) ( )

( ) ( )

1 3

2 4

Ê

Ë
Á

ˆ
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˜

For example, c as a symmetric matrix with cos(xy) on the off-diagonal terms:

c = char('x.^2+y.^2',...
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    'cos(x.*y)',...

    'u./(1+x.^2+y.^2)')

To include subdomains separated by '!', include the '!' in each row. For example,

c = char('1+x.^2+y.^2!x.^2+y.^2',...

    'cos(x.*y)!sin(x.*y)',...

    'u./(1+x.^2+y.^2)!u.*(x.^2+y.^2)')

Caution Do not include spaces in your coefficient strings in the PDE app. The string
parser can misinterpret a space as a vector separator, as when a MATLAB vector uses a
space to separate elements of a vector.

For elliptic problems, when you include 'u', 'ux', 'uy', or 'uz', you must use the
pdenonlin solver instead of assempde. In the PDE app, select Solve > Parameters >
Use nonlinear solver.

Related Examples
• “Solve PDE with Coefficients in Functional Form” on page 2-72
• “Enter Coefficients in the PDE App” on page 2-78
• “Specify 2-D Scalar Coefficients in Function Form” on page 2-67

More About
• “Scalar PDE Coefficients” on page 2-59
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Coefficients for Scalar PDEs in PDE App

To enter coefficients for your PDE, select PDE > PDE Specification.

Enter text expressions using these conventions:

• x — x-coordinate
• y — y-coordinate
• u — Solution of equation
• ux — Derivative of u in the x-direction
• uy — Derivative of u in the y-direction
• t — Time (parabolic and hyperbolic equations)
• sd — Subdomain number

For example, you could use this expression to represent a coefficient:

(x+y)./(x.^2+y.^2+1)+3+sin(t)./(1+u.^4)

For elliptic problems, when you include u, ux, or uy, you must use the nonlinear solver.
Select Solve > Parameters > Use nonlinear solver.

Note:
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• Do not use quotes or unnecessary spaces in your entries. The string parser can
misinterpret a space as a vector separator, as when a MATLAB vector uses a space to
separate elements of a vector.

• Use .*, ./, and .^ for multiplication, division, and exponentiation operations. The
text expressions operate on row vectors, so the operations must make sense for row
vectors. The row vectors are the values at the triangle centroids in the mesh.

You can write MATLAB functions for coefficients as well as plain text expressions. For
example, suppose your coefficient f is given by the file fcoeff.m.

function f = fcoeff(x,y,t,sd)

f = (x.*y)./(1+x.^2+y.^2); % f on subdomain 1

f = f + log(1+t); % include time

r = (sd == 2); % subdomain 2

f2 = cos(x+y); % coefficient on subdomain 2 

f(r) = f2(r); % f on subdomain 2

Use fcoeff(x,y,t,sd) as the f coefficient in the parabolic solver.

Alternatively, you can represent a coefficient in function form rather than in string form.
See “Specify 2-D Scalar Coefficients in Function Form” on page 2-67.

The coefficient c is a 2-by-2 matrix. You can give 1-, 2-, 3-, or 4-element matrix
expressions. Separate the expressions for elements by spaces. These expressions mean:

•
1-element expression: 

c

c
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•
2-element expression: 
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•
3-element expression: 
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•
4-element expression: 
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For example, c is a symmetric matrix with constant diagonal entries and cos(xy) as the
off-diagonal terms:
1.1 cos(x.*y) 5.5

This corresponds to coefficients for the parabolic equation
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∂
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xy

xy
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. cos( )

cos( ) .
.

1 1

5 5
10

Related Examples
• “Enter Coefficients in the PDE App” on page 2-78

More About
• “Scalar PDE Coefficients” on page 2-59
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Specify 2-D Scalar Coefficients in Function Form

In this section...

“Coefficients as the Result of a Program” on page 2-67
“Calculate Coefficients in Function Form” on page 2-68

Coefficients as the Result of a Program

Usually, the simplest way to give coefficients as the result of a program is to use a string
expression as described in “Specify Scalar PDE Coefficients in String Form” on page 2-61.
For the most detailed control over coefficients, though, you can write a function form of
coefficients.

A coefficient in function form for 2-D geometry has the syntax
coeff = coeffunction(p,t,u,time)

coeff represents any coefficient: c, a, f, or d.

Your program evaluates the return coeff as a row vector of the function values at the
centroids of the triangles t. For help calculating these values, see “Calculate Coefficients
in Function Form” on page 2-68.

• p and t are the node points and triangles of the mesh. For a description of these data
structures, see “Mesh Data” on page 2-161. In brief, each column of p contains the
x- and y-values of a point, and each column of t contains the indices of three points in
p and the subdomain label of that triangle.

• u is a row vector containing the solution at the points p. u is [] if the coefficients do
not depend on the solution or its derivatives.

• time is the time of the solution, a scalar. time is [] if the coefficients do not depend
on time.

Caution In function form, t represents triangles, and time represents time. In string
form, t represents time, and triangles do not enter into the form.

Pass the coefficient function to the solver as a string 'coeffunction' or as a function
handle @coeffunction. In the PDE app, pass the coefficient as a string coeffunction
without quotes, because the PDE app interprets all entries as strings.
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If your coefficients depend on u or time, then when u or time are NaN, ensure that the
corresponding coeff consist of a vector of NaN of the correct size. This signals to solvers,
such as parabolic, to use a time-dependent or solution-dependent algorithm.

For elliptic problems, if any coefficient depends on u or its gradient, you must use the
pdenonlin solver instead of assempde. In the PDE app, select Solve > Parameters >
Use nonlinear solver.

Calculate Coefficients in Function Form

X- and Y-Values

The x- and y-values of the centroid of a triangle t are the mean values of the entries of
the points p in t. To get row vectors xpts and ypts containing the mean values:

% Triangle point indices

it1 = t(1,:);

it2 = t(2,:);

it3 = t(3,:);

% Find centroids of triangles

xpts = (p(1,it1)+p(1,it2)+p(1,it3))/3;

ypts = (p(2,it1)+p(2,it2)+p(2,it3))/3;

Interpolated u

The pdeintrp function linearly interpolates the values of u at the centroids of t, based
on the values at the points p.

uintrp = pdeintrp(p,t,u); % Interpolated values at centroids

The output uintrp is a row vector with the same number of columns as t. Use uintrp
as the solution value in your coefficient calculations.

Gradient or Derivatives of u

The pdegrad function approximates the gradient of u.

[ux,uy] = pdegrad(p,t,u); % Approximate derivatives

The outputs ux and uy are row vectors with the same number of columns as t.
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Subdomains

If your coefficients depend on the subdomain label, check the subdomain number for each
triangle. Subdomains are the last (fourth) row of the triangle matrix. So the row vector of
subdomain numbers is:

subd = t(4,:);

You can see the subdomain labels by using the pdegplot function with the
SubdomainLabels name-value pair set to 'on':

pdegplot(g,'SubdomainLabels','on')

Related Examples
• “Solve PDE with Coefficients in Functional Form” on page 2-72
• “Enter Coefficients in the PDE App” on page 2-78
• “Specify Scalar PDE Coefficients in String Form” on page 2-61
• “Deflection of a Piezoelectric Actuator” on page 3-19

More About
• “Scalar PDE Coefficients” on page 2-59
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Specify 3-D PDE Coefficients in Function Form

Usually, the simplest way to give coefficients as the result of a program is to use a string
expression, as described in “Specify Scalar PDE Coefficients in String Form” on page
2-61. For more detailed control over coefficients, though, you can write coefficients in
function form.

A coefficient in function form for 3-D geometry uses this syntax:

coeff = myfun(region,state)

coeff represents any coefficient: c, a, f, or d. Partial Differential Equation Toolbox
solvers pass the region and state data to your function.

• region is a structure with these fields:

• region.x

• region.y

• region.z

The fields represent the x-, y-, and z- coordinates of points for which your function
calculates coefficient values. The region fields are row vectors.

• state is a structure with these fields:

• state.u

• state.ux

• state.uy

• state.uz

• state.t

The state.u field represents the current value of the solution u. The state.ux,
state.uy, and state.uz fields are estimates of the solution’s partial derivatives (∂u/
∂x, ∂u/∂y, and ∂u/∂z) at the corresponding points of the region structure. The solution
and gradient estimates are row vectors. The state.t field is a scalar representing
time for the parabolic and hyperbolic solvers.

The coeff output of your function is an NC-by-M matrix, where

• NC is the number of elements in a coefficient column vector.
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• f — NC is the same as the number of equations, N.
• a or d — NC can be 1, N, N(N+1)/2, or N2 (see “a or d Coefficient for Systems” on

page 2-113).
• c — NC can have many different values in the range 1 to 9N2 (see “c Coefficient for

Systems” on page 2-95).
• M is the number of elements in any of the region fields. This is also the number of

elements in the state.u fields.

Your function must compute in a vectorized fashion. In other words, it must return the
matrix of values for every point in region. For example, in an N = 1 problem where the
f coefficient is 1 + x2, one possible function is:

function fcoeff = ffunction(region,state)

fcoeff = 1 + region.x.^2;

To pass this coefficient to the parabolic solver, set the coefficient to @ffunction. For
example:

f = @ffunction;

% Assume the other inputs are defined

u = parabolic(u0,tlist,model,c,a,f,d);

If you need a constant value, use the size of region.x as the number of columns of the
matrix. For an N = 3 problem:

function fcoeff = ffunction(region,state)

fcoeff = ones(3,length(region.x));

Related Examples
• “Solve Problems Using PDEModel Objects” on page 2-11
• “2-D Slices Through 3-D Geometry” on page 3-130
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Solve PDE with Coefficients in Functional Form

This example shows how to write PDE coefficients in string form and in functional form
for 2-D geometry.

Geometry

The geometry is a rectangle with a circular hole. Create a PDE model container, and
incorporate the geometry into the container.

model = createpde(1);

% Rectangle is code 3, 4 sides,

% followed by x-coordinates and then y-coordinates

R1 = [3,4,-1,1,1,-1,-.4,-.4,.4,.4]';

% Circle is code 1, center (.5,0), radius .2

C1 = [1,.5,0,.2]';

% Pad C1 with zeros to enable concatenation with R1

C1 = [C1;zeros(length(R1)-length(C1),1)];

geom = [R1,C1];

% Names for the two geometric objects

ns = (char('R1','C1'))';

% Set formula

sf = 'R1-C1';

% Create geometry

gd = decsg(geom,sf,ns);

% Include the geometry in the model

geometryFromEdges(model,gd);

% View geometry

pdegplot(model,'EdgeLabels','on')

xlim([-1.1 1.1])

axis equal
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PDE Coefficients

The PDE is parabolic,

d c au f
u

t
u

∂

∂
—-— ◊ ( ) + = ,

with the following coefficients:

• d = 5
• a = 0



2 Setting Up Your PDE

2-74

• f is a linear ramp up to 10, holds at 10, then ramps back down to 0:
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• c = 1 +.x2 + y2

Write a function for the f coefficient.

function f = framp(t)

if t <= 0.1

    f = 10*t;

elseif t <= 0.9

    f = 1;

else

    f = 10-10*t;

end

f = 10*f;

Boundary conditions

The boundary conditions on the outer boundary (segments 1 through 4) are Dirichlet,
with the value u(x,y) = t(x – y), where t is time. Suppose the circular boundary (segments
5 through 8) has a generalized Neumann condition, with q = 1 and g = x2 + y2.

myufun = @(region,state)state.time*(region.x - region.y);

mygfun = @(region,state)(region.x.^2 + region.y.^2);

applyBoundaryCondition(model,'Edge',1:4,'u',myufun,'Vectorized','on');

applyBoundaryCondition(model,'Edge',5:8,'q',1,'g',mygfun,'Vectorized','on');

The boundary conditions are the same as in “Boundary Conditions for Scalar PDE” on
page 2-148. That description uses the older function form for specifying boundary
conditions, which is no longer recommended. This description uses the recommended
object form.

Initial Conditions

The initial condition is u(x,y) = 0 at t = 0.

u0 = 0;
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Mesh

Create the mesh.

generateMesh(model);

Parabolic Solution Times

Set the time steps for the parabolic solver to 50 steps from time 0 to time 1.

tlist = linspace(0,1,50);

Solution

Solve the parabolic PDE.

d = 5;

a = 0;

f = 'framp(t)';

c = '1+x.^2+y.^2';

u = parabolic(u0,tlist,model,c,a,f,d);

View an animation of the solution.

for tt = 1:size(u,2) % number of steps

    pdeplot(model,'xydata',u(:,tt),'zdata',u(:,tt),'colormap','jet')

    axis([-1 1 -1/2 1/2 -1.5 1.5 -1.5 1.5]) % use fixed axis

    title(['Step ' num2str(tt)])

    view(-45,22)

    drawnow

    pause(.1)

end
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Alternative Coefficient Syntax

Equivalently, you can write a function for the coefficient f in the syntax described in
“Specify 2-D Scalar Coefficients in Function Form” on page 2-67.

function f = framp2(p,t,u,time)

if time <= 0.1

    f = 10*time;

elseif time <= 0.9

    f = 1;

else

    f = 10-10*time;

end
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f = 10*f;

Call this function by setting

f = @framp2;

u = parabolic(u0,tlist,model,c,a,f,d);

You can also write a function for the coefficient c, though it is more complicated than the
string formulation.

function c = cfunc(p,t,u,time)

% Triangle point indices

it1 = t(1,:);

it2 = t(2,:);

it3 = t(3,:);

% Find centroids of triangles

xpts = (p(1,it1)+p(1,it2)+p(1,it3))/3;

ypts = (p(2,it1)+p(2,it2)+p(2,it3))/3;

c = 1 + xpts.^2 + ypts.^2;

Call this function by setting

c = @cfunc;

u = parabolic(u0,tlist,model,c,a,f,d);

Related Examples
• “Enter Coefficients in the PDE App” on page 2-78
• “Specify Scalar PDE Coefficients in String Form” on page 2-61
• “Specify 2-D Scalar Coefficients in Function Form” on page 2-67
• “Nonlinear Heat Transfer In a Thin Plate” on page 3-64
• “Deflection of a Piezoelectric Actuator” on page 3-19

More About
• “Scalar PDE Coefficients” on page 2-59
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Enter Coefficients in the PDE App

This example shows how to enter coefficients in the PDE app.

Caution: Do not include spaces in your coefficient strings in the PDE app. The string
parser can misinterpret a space as a vector separator, as when a MATLAB vector uses a
space to separate elements of a vector.

The PDE is parabolic,
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with the following coefficients:

• d = 5
• a = 0
• f is a linear ramp up to 10, holds at 10, then ramps back down to 0:
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• c = 1 +.x2 + y2

These coefficients are the same as in “Solve PDE with Coefficients in Functional Form”
on page 2-72.

Write the following file framp.m and save it on your MATLAB path.

function f = framp(t)

if t <= 0.1

    f = 10*t;

elseif t <= 0.9

    f = 1;

else

    f = 10-10*t;

end

f = 10*f;
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Open the PDE app, either by typing pdetool at the command line, or selecting PDE
from the Apps menu.

Select PDE > PDE Specification.

Select Parabolic equation. Fill in the coefficients as pictured:

• c = 1+x.^2+y.^2
• a = 0
• f = framp(t)
• d = 5

The PDE app interprets all inputs as strings. Therefore, do not include quotes for the c
or f coefficients.

Select Options > Grid and Options > Snap.

Select Draw > Draw Mode, then draw a rectangle centered at (0,0) extending to 1 in the
x-direction and 0.4 in the y-direction.

Draw a circle centered at (0.5,0) with radius 0.2

Change the set formula to R1-C1.
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Select Boundary > Boundary Mode

Click a segment of the outer rectangle, then Shift-click the other three segments so that
all four segments of the rectangle are selected.

Double-click one of the selected segments.

Fill in the resulting dialog box as pictured, with Dirichlet boundary conditions h = 1 and
r = t*(x-y). Click OK.
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Select the four segments of the inner circle using Shift-click, and double-click one of the
segments.

Select Neumann boundary conditions, and set g = x.^2+y.^2 and q = 1. Click OK.



2 Setting Up Your PDE

2-82

Click  to initialize the mesh.

Click  to refine the mesh. Click  again to get an even finer mesh.

Select Mesh > Jiggle Mesh to improve the quality of the mesh.

Set the time interval and initial condition by selecting Solve > Parameters and setting
Time = linspace(0,1,50) and u(t0) = 0. Click OK.

Solve and plot the equation by clicking the  button.
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Match the following figure using Plot > Parameters.
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Click the Plot button.
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Related Examples
• “Solve PDE with Coefficients in Functional Form” on page 2-72

More About
• “Coefficients for Scalar PDEs in PDE App” on page 2-64
• “Scalar PDE Coefficients” on page 2-59
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Coefficients for Systems of PDEs

As “Systems of PDEs” on page 2-58 describes, toolbox functions can address the case of
systems of N PDEs. How do you represent the coefficients of your PDE in the correct
form? In general, an elliptic system is

-— ◊ ƒ—( ) + =c u au f .

For 2-D systems, the notation — ◊ ƒ —( )c u  represents an N-by-1 matrix with an (i,1)-
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For 3-D systems, the notation — ◊ ƒ —( )c u  represents an N-by-1 matrix with an (i,1)-
component
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The symbols a and d denote N-by-N matrices, and f denotes a column vector of length N.

Other problems with N > 1 are the parabolic system
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and the eigenvalue system

-— ◊ ƒ—( ) + =c u au dul .

To solve a PDE using this toolbox, you convert your problem into one of the forms the
toolbox accepts. Then express your problem coefficients in a form the toolbox accepts.

The question is how to express each coefficient: d, c, a, and f. For answers, see “f
Coefficient for Systems” on page 2-92, “c Coefficient for Systems” on page 2-95,
and “a or d Coefficient for Systems” on page 2-113.

Note: If any coefficient depends on time or on the solution u or its gradient, then all
coefficients should be NaN when either time or the solution u is NaN. This is the way that
solvers check to see if the equation depends on time or on the solution.
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Systems in the PDE App

You can enter coefficients for a system with N = 2 equations in the PDE app, see
“Systems of PDEs” on page 2-58. To do so, open the PDE app and select Generic
System.

Then select PDE > PDE Specification.
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Enter string expressions for coefficients using the form in “Coefficients for Scalar
PDEs in PDE App” on page 2-64, with additional options for nonlinear equations. The
additional options are:

• Represent the ith component of the solution u using 'u(i)' for i = 1 or 2.
• Similarly, represent the ith components of the gradients of the solution u using

'ux(i)' and 'uy(i)' for i = 1 or 2.

Note: For elliptic problems, when you include coefficients u(i), ux(i), or uy(i), you
must use the nonlinear solver. Select Solve > Parameters > Use nonlinear solver.

Do not use quotes or unnecessary spaces in your entries.

For higher-dimensional systems, do not use the PDE app. Represent your problem
coefficients at the command line.

You can enter scalars into the c matrix, corresponding to these equations:
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If you need matrix versions of any of the cij coefficients, enter expressions separated by
spaces. You can give 1-, 2-, 3-, or 4-element matrix expressions. These mean:

•
1-element expression: 
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•
2-element expression: 
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•
3-element expression: 
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•
4-element expression: 
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For details, see “c Coefficient for Systems” on page 2-95.
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For example, these expressions show one of each type (1-, 2-, 3-, and 4-element
expressions)

These expressions correspond to the equations
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Related Examples
• “Coefficients for Scalar PDEs in PDE App” on page 2-64
• “f Coefficient for Systems” on page 2-92
• “c Coefficient for Systems” on page 2-95
• “a or d Coefficient for Systems” on page 2-113
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More About
• “Coefficients for Systems of PDEs” on page 2-86
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f Coefficient for Systems

This section describes how to write the coefficient f in the equation

-— ◊ ƒ—( ) + =c u au f .

or in similar equations. The number of rows in f indicates N, the number of equations,
see “Systems of PDEs” on page 2-58. Give f as any of the following:

• A column vector with N components. For example, if N = 3, f could be:

f = [3;4;10];

• A character array with N rows. The rows of the character array are MATLAB
expressions as described in “Specify Scalar PDE Coefficients in String Form” on page
2-61, with additional options for nonlinear equations. The additional options are:

• Represent the ith component of the solution u using 'u(i)'.
• Similarly, represent the ith components of the gradients of the solution u using

'ux(i)', 'uy(i)' and 'uz(i)'.

Pad the rows with spaces so each row has the same number of characters (char does
this automatically). For example, if N = 3, f could be:

f = char('sin(x)+cos(y)','cosh(x.*y)*(1+u(1).^2)','x.*y./(1+x.^2+y.^2)')

f =

sin(x)+cos(y)         

cosh(x.*y)*(1+u(1).^2)

x.*y./(1+x.^2+y.^2)   

• For 2-D geometry, a function as described in “Specify 2-D Scalar Coefficients in
Function Form” on page 2-67. The function should return a matrix of size N-by-Nt,
where Nt is the number of triangles in the mesh. The function should evaluate f at
the triangle centroids, as in “Specify 2-D Scalar Coefficients in Function Form” on
page 2-67. Give solvers the function name as a string 'filename', or as a function
handle @filename, where filename.m is a file on your MATLAB path. For details
on writing the function, see “Calculate Coefficients in Function Form” on page 2-68.

For example, if N = 3, f could be:

function f = fcoeffunction(p,t,u,time)
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N = 3; % Number of equations

% Triangle point indices

it1 = t(1,:);

it2 = t(2,:);

it3 = t(3,:);

% Find centroids of triangles

xpts = (p(1,it1)+p(1,it2)+p(1,it3))/3;

ypts = (p(2,it1)+p(2,it2)+p(2,it3))/3;

[ux,uy] = pdegrad(p,t,u); % Approximate derivatives

uintrp = pdeintrp(p,t,u); % Interpolated values at centroids

nt = size(t,2); % Number of columns

f = zeros(N,nt); % Allocate f

% Now the particular functional form of f

f(1,:) = xpts - ypts + uintrp(1,:);

f(2,:) = 1 + tanh(ux(1,:)) + tanh(uy(3,:));

f(3,:) = (5+uintrp(3,:)).*sqrt(xpts.^2+ypts.^2);

Because this function depends on the solution u, if the equation is elliptic, use the
pdenonlin solver. The initial value can be all 0s in the case of Dirichlet boundary
conditions:

np = size(p,2); % number of points

u0 = zeros(N*np,1); % initial guess

• For 3-D geometry, a function as described in “Specify 3-D PDE Coefficients in
Function Form” on page 2-70. The function should return a matrix of size N-by-Nr,
where Nr is the number of points in the region that the solver passes. The function
should evaluate f at these points. Give solvers the function as a function handle
@filename, where filename.m is a file on your MATLAB path, or is an anonymous
function.

Caution It is not reliable to specify f as a scalar or single string expression. Sometimes
the toolbox can expand the single input to a vector or character array with N identical
rows. But you can get an error when the toolbox fails to determine N. Instead of a scalar
or single string, for reliability specify f as a column vector or character array with N
rows.
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Related Examples
• “a or d Coefficient for Systems” on page 2-113
• “c Coefficient for Systems” on page 2-95
• “Solve Problems Using PDEModel Objects” on page 2-11
• “Deflection of a Piezoelectric Actuator” on page 3-19
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c Coefficient for Systems

In this section...

“c as Tensor, Matrix, and Vector” on page 2-95
“2-D Systems” on page 2-98
“3-D Systems” on page 2-104

c as Tensor, Matrix, and Vector

This topic describes how to write the coefficient c in equations such as

-— ◊ ƒ—( ) + =c u au f .

For 2-D systems, the coefficient c is an N-by-N-by-2-by-2 tensor with components
c(i,j,k,l). N is the number of equations (see “Systems of PDEs” on page 2-58). For 3-D
systems, c is an N-by-N-by-3-by-3 tensor.

For 2-D systems, the notation — ◊ ƒ —( )c u  represents an N-by-1 matrix with an (i,1)-
component
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For 3-D systems, the notation — ◊ ƒ —( )c u  represents an N-by-1 matrix with an (i,1)-
component

∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

Ê

Ë
Á

ˆ

¯
˜

+

=
Â

x
c

x x
c

y x
c

z
ui j i j i j j

j

N

, , , , , , , , ,1 1 1 2 1 3

1

∂∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

Ê

Ë
Á

ˆ

¯
˜

=
Â

y
c

x y
c

y y
c

z
ui j i j i j j

j

N

, , , , , , , , ,2 1 2 2 2 3

1

++ ∂
∂

+ ∂
∂

+ ∂
∂

Ê

Ë
Á

ˆ

¯
˜

∂
∂

∂
∂

∂
∂= z z z

c
x

c
y

c
z

ui j i j i j j

j

N

, , , , , , , , ,3 1 3 2 3 3

1

ÂÂ .



2 Setting Up Your PDE

2-96

All representations of the c coefficient begin with a “flattening” of the tensor to a matrix.
For 2-D systems, the N-by-N-by-2-by-2 tensor flattens to a 2N-by-2N matrix, where the
matrix is logically an N-by-N matrix of 2-by-2 blocks.
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For 3-D systems, the N-by-N-by-3-by-3 tensor flattens to a 3N-by-3N matrix, where the
matrix is logically an N-by-N matrix of 3-by-3 blocks.
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These matrices further get flattened into vectors. First the N-by-N matrices of 2-by-2 and
3-by-3 blocks are transformed into "vectors" of 2-by-2 and 3-by-3 blocks. Then the blocks
are turned into vectors in the usual column-wise way.

The coefficient vector c relates to the tensor c as follows. For 2-D systems,
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Coefficient c(i,j,k,l) is in row (4N(j–1) + 4i + 2l + k – 6) of the vector c.

For 3-D systems,
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Coefficient c(i,j,k,l) is in row (9N(j–1) + 9i + 3l + k – 12) of the vector c.

Express c as numbers, text expressions, or functions, as in “f Coefficient for Systems” on
page 2-92.

Often, your tensor c has structure, such as symmetric or block diagonal. In many cases,
you can represent c using a smaller vector than one with 4N2 components for 2-D or 9N2

components for 3-D.
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The number of rows in the matrix can differ from 4N2 for 2-D or 9N2 for 3-D, as described
in “2-D Systems” on page 2-98 and “3-D Systems” on page 2-104.

In function form for 2-D systems, the number of columns is Nt, which is the number of
triangles or tetrahedra in the mesh. The function should evaluate c at the triangle or
tetrahedron centroids, as in “Specify 2-D Scalar Coefficients in Function Form” on page
2-67. Give solvers the function name as a string 'filename', or as a function handle
@filename, where filename.m is a file on your MATLAB path. For details on writing
the function, see “Calculate Coefficients in Function Form” on page 2-68.

For the function form of coefficients of 3-D systems, see “Specify 3-D PDE Coefficients in
Function Form” on page 2-70.

2-D Systems

Scalar c, 2-D Systems

The software interprets a scalar c as a diagonal matrix, with c(i,i,1,1) and c(i,i,2,2) equal
to the scalar, and all other entries 0.
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Two-Element Column Vector c, 2-D Systems

The software interprets a two-element column vector c as a diagonal matrix, with
c(i,i,1,1) and c(i,i,2,2) as the two entries, and all other entries 0.
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Three-Element Column Vector c, 2-D Systems

The software interprets a three-element column vector c as a symmetric block diagonal
matrix, with c(i,i,1,1) = c(1), c(i,i,2,2) = c(3), and c(i,i,1,2) = c(i,i,2,1) = c(2).
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Four-Element Column Vector c, 2-D Systems

The software interprets a four-element column vector c as a block diagonal matrix.
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N-Element Column Vector c, 2-D Systems

The software interprets an N-element column vector c as a diagonal matrix.
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Caution If N = 2, 3, or 4, the 2-, 3-, or 4-element column vector form takes precedence over
the N-element form. For example, if N = 3, and you have a c matrix of the form
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you cannot use the N-element form of c. Instead, you must use the 2N-element form. If
you give c as the vector [c1;c2;c3], the software interprets c as a 3-element form:
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Instead, use the 2N-element form [c1;c1;c2;c2;c3;c3].

2N-Element Column Vector c, 2-D Systems

The software interprets a 2N-element column vector c as a diagonal matrix.

c

c

c

c

c N

( )

( )

( )

( )

(

1 0 0 0 0 0

0 2 0 0 0 0

0 0 3 0 0 0

0 0 0 4 0 0

0 0 0 0 2 1

L

L

L

L

M M M M O M M

L - ))

( )

0

0 0 0 0 0 2L c N

Ê

Ë

Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜

Caution If N = 2, the 4-element form takes precedence over the 2N-element form. For
example, if your c matrix is

c

c

c

c

1 0 0 0

0 2 0 0

0 0 3 0

0 0 0 4

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

,
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you cannot give c as [c1;c2;c3;c4], because the software interprets this vector as the
4-element form

c c

c c

c c

c c

1 3 0 0

2 4 0 0

0 0 1 3

0 0 2 4

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

.

Instead, use the 3N-element form [c1;0;c2;c3;0;c4] or the 4N-element form
[c1;0;0;c2;c3;0;0;c4].

3N-Element Column Vector c, 2-D Systems

The software interprets a 3N-element column vector c as a symmetric block diagonal
matrix.

c c

c c

c c

c c

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 2 0 0 0 0

2 3 0 0 0 0

0 0 4 5 0 0

0 0 5 6 0 0

L

L

L

L

M M M M O M MM

L

L

0 0 0 0 3 2 3 1

0 0 0 0 3 1 3

c N c N

c N c N

( ) ( )

( ) ( )

- -
-

Ê

Ë

Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜̃
˜
˜
˜
˜
˜
˜
˜

Coefficient c(i,j,k,l) is in row (3i + k + l – 4) of the vector c.

4N-Element Column Vector c, 2-D Systems

The software interprets a 4N-element column vector c as a block diagonal matrix.
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c c

c c

c c

c c

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 3 0 0 0 0

2 4 0 0 0 0

0 0 5 7 0 0

0 0 6 8 0 0

L

L

L

L

M M M M O M MM

L

L

0 0 0 0 4 3 4 1

0 0 0 0 4 2 4

c N c N

c N c N

( ) ( )

( ) ( )

- -
-

Ê

Ë

Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜̃
˜
˜
˜
˜
˜
˜
˜

Coefficient c(i,j,k,l) is in row (4i + 2l + k – 6) of the vector c.

2N(2N+1)/2-Element Column Vector c, 2-D Systems

The software interprets a 2N(2N+1)/2-element column vector c as a symmetric matrix. In
the following diagram, • means the entry is symmetric.

c c c c c N N c N N

c c

( ) ( ) ( ) ( ) (( )( ) ) (( )( ) )

( ) ( )

1 2 4 6 1 2 1 1 1 2 1 3

3 5

L - - + - - +
∑ cc c N N c N N

c c c N

( ) (( )( ) ) (( )( ) )

( ) ( ) (( )(

7 1 2 1 2 1 2 1 4

8 9 1 2

L

L

- - + - - +

∑ ∑ - NN c N N

c c N N c N

- + - - +
∑ ∑ ∑ - - + -

1 5 1 2 1 7

10 1 2 1 6 1 2

) ) (( )( ) )

( ) (( )( ) ) (( )(L NN

c N N c N N

c N N

- +

∑ ∑ ∑ ∑ + - + -
∑ ∑ ∑ ∑ ∑ +

1 8

2 1 2 2 1 1

2 1

) )

( ( ) ) ( ( ) )

( (

M M M M O M M

L

L )))

Ê

Ë

Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜

Coefficient c(i,j,k,l), for i < j, is in row (2j2 – 3j + 4i + 2l + k – 5) of the vector c. For i = j,
coefficient c(i,j,k,l) is in row (2i2 + i + l + k – 4) of the vector c.

4N2-Element Column Vector c, 2-D Systems

The software interprets a 4N2-element column vector c as a matrix.
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c c c N c N c N N c N N

c c c

( ) ( ) ( ) ( ) ( ( ) ) ( ( ) )

( ) ( ) (

1 3 4 1 4 3 4 1 1 4 1 3

2 4 4

+ + - + - +L

NN c N c N N c N N

c c c N c N

+ + - + - +

+ +

2 4 4 4 1 2 4 1 4

5 7 4 5 4 7

) ( ) ( ( ) ) ( ( ) )

( ) ( ) ( ) (

L

)) ( ( ) ) ( ( ) )

( ) ( ) ( ) ( ) ( (

L

L

c N N c N N

c c c N c N c N N

4 1 5 4 1 7

6 8 4 6 4 8 4 1

- + - +
+ + - )) ) ( ( ) )

( ) ( ) ( ) ( ) (

+ - +

- - - -

6 4 1 8

4 3 4 1 8 3 8 1 4
2

c N N

c N c N c N c N c N

M M M M O M M

L -- -

- - -

Ê

Ë

Á
Á
Á
Á
Á

3 4 1

4 2 4 8 2 8 4 2 4

2

2 2

) ( )

( ) ( ) ( ) ( ) ( ) ( )

c N

c N c N c N c N c N c NL

ÁÁ
Á
Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜

.

Coefficient c(i,j,k,l) is in row (4N(j–1) + 4i + 2l + k – 6) of the vector c.

3-D Systems

Scalar c, 3-D Systems

The software interprets a scalar c as a diagonal matrix, with c(i,i,1,1), c(i,i,2,2), and
c(i,i,3,3) equal to the scalar, and all other entries 0.

c

c

c

c

c

c

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0

L

L

L

L

L

L 00 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

M M M M M M O M M M

L

L

L

c

c

c

Ê

Ë

Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
ÁÁ
ÁÁ

ˆ

¯

˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜̃

Three-Element Column Vector c, 3-D Systems

The software interprets a three-element column vector c as a diagonal matrix, with
c(i,i,1,1), c(i,i,2,2), and c(i,i,3,3) as the three entries, and all other entries 0.
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c

c

c

c

c

( )

( )

( )

( )

(

1 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0

0 0 3 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0

L

L

L

L

22 0 0 0 0

0 0 0 0 0 3 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 2 0

0

)

( )

( )

( )

L

L

M M M M M M O M M M

L

L

c

c

c

00 0 0 0 0 0 0 3L c( )

Ê

Ë

Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
ÁÁ

ˆ

¯

˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜̃

Six-Element Column Vector c, 3-D Systems

The software interprets a six-element column vector c as a symmetric block diagonal
matrix, with
c(i,i,1,1) = c(1)
c(i,i,2,2) = c(3)
c(i,i,1,2) = c(i,i,2,1) = c(2)
c(i,i,1,3) = c(i,i,3,1) = c(4)
c(i,i,2,3) = c(i,i,3,2) = c(5)
c(i,i,3,3) = c(6).

In the following diagram, • means the entry is symmetric.
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c c c

c c

c

c c

( ) ( ) ( )

( ) ( )

( )

( ) (

1 2 4 0 0 0 0 0 0

3 5 0 0 0 0 0 0

6 0 0 0 0 0 0

0 0 0 1 2

L

L

L

∑
∑ ∑

)) ( )

( ) ( )

( )

(

c

c c

c

c

4 0 0 0

0 0 0 3 5 0 0 0

0 0 0 6 0 0 0

0 0 0 0 0 0

L

L

L

M M M M M M O M M M

L

∑
∑ ∑

11 2 4

0 0 0 0 0 0 3 5

0 0 0 0 0 0 6

) ( ) ( )

( ) ( )

( )

c c

c c

c

L

L

∑
∑ ∑

Ê

Ë

Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
ÁÁ

ˆ̂

¯

˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜̃

Nine-Element Column Vector c, 3-D Systems

The software interprets a nine-element column vector c as a block diagonal matrix.

c c c

c c c

c c c

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 4 7 0 0 0 0 0 0

2 5 8 0 0 0 0 0 0

3 6 9 0 0 0 0 0 0

0

L

L

L

00 0 1 4 7 0 0 0

0 0 0 2 5 8 0 0 0

0 0 0 3 6 9 0 0 0

c c c

c c c

c c c

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

L

L

L

M MM M M M M O M M M

L

L

L

0 0 0 0 0 0 1 4 7

0 0 0 0 0 0 2 5 8

0 0 0 0 0 0 3

c c c

c c c

c

( ) ( ) ( )

( ) ( ) ( )

( )) ( ) ( )c c6 3

Ê

Ë

Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
ÁÁ

ˆ

¯

˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜̃

N-Element Column Vector c, 3-D Systems

The software interprets an N-element column vector c as a diagonal matrix.
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c

c

c

c

c

( )

( )

( )

( )

(

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 2 0 0 0 0 0

0 0 0 0

L

L

L

L

22 0 0 0 0

0 0 0 0 0 2 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0

)

( )

( )

( )

L

L

M M M M M M O M M M

L

L

c

c N

c N

00 0 0 0 0 0 0L c N( )

Ê

Ë

Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
ÁÁ

ˆ

¯

˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜̃

Caution If N = 3, 6, or 9, the 3-, 6-, or 9-element column vector form takes precedence over
the N-element form. For example, if N = 3, and you have a c matrix of the form

c

c

c

c

c

( )

( )

( )

( )

( )

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 2 0 0 0 0 0

0 0 0 0 2 0 0 00 0

0 0 0 0 0 2 0 0 0

0 0 0 0 0 0 3 0 0

0 0 0 0 0 0 0 3 0

0 0 0 0 0 0 0 0 3

c

c

c

c

( )

( )

( )

( )

Ê

Ë

Á
Á
Á
Á
Á
ÁÁ
Á
Á
Á
Á
Á
Á
Á
Á
ÁÁ

ˆ

¯

˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜̃

,

you cannot use the N-element form of c. If you give c as the vector [c1;c2;c3], the
software interprets c as a 3-element form:
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c

c

c

c

c

( )

( )

( )

( )

( )

1 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0

0 0 3 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 2 0 0 00 0

0 0 0 0 0 3 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 0 3

c

c

c

c

( )

( )

( )

( )

Ê

Ë

Á
Á
Á
Á
Á
ÁÁ
Á
Á
Á
Á
Á
Á
Á
Á
ÁÁ

ˆ

¯

˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜̃

.

Instead, use one of these forms:

• 6N-element form — [c1;0;c1;0;0;c1;c2;0;c2;0;0;c2;c3;0;c3;0;0;c3]

• 9N-element form —
[c1;0;0;0;c1;0;0;0;c1;c2;0;0;0;c2;0;0;0;c2;c3;0;0;0;c3;0;0;0;c3]

3N-Element Column Vector c, 3-D Systems

The software interprets a 3N-element column vector c as a diagonal matrix.

c

c

c

c

c

( )

( )

( )

( )

(

1 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0

0 0 3 0 0 0 0 0 0

0 0 0 4 0 0 0 0 0

0 0 0 0

L

L

L

L

55 0 0 0 0

0 0 0 0 0 6 0 0 0

0 0 0 0 0 0 3 2 0 0

0 0 0 0 0 0 0 3

)

( )

( )

(

L

L

M M M M M M O M M M

L

L

c

c N

c

-
NN

c N

-

Ê

Ë

Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
ÁÁ

ˆ

¯

˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜̃

1 0

0 0 0 0 0 0 0 0 3

)

( )L
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Caution If N = 3, the 9-element form takes precedence over the 3N-element form. For
example, if your c matrix is

c

c

c

c

c

( )

( )

( )

( )

( )

1 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0

0 0 3 0 0 0 0 0 0

0 0 0 4 0 0 0 0 0

0 0 0 0 5 0 0 00 0

0 0 0 0 0 6 0 0 0

0 0 0 0 0 0 7 0 0

0 0 0 0 0 0 0 8 0

0 0 0 0 0 0 0 0 9

c

c

c

c

( )

( )

( )

( )

Ê

Ë

Á
Á
Á
Á
Á
ÁÁ
Á
Á
Á
Á
Á
Á
Á
Á
ÁÁ

ˆ

¯

˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜̃

,

you cannot give c as [c1;c2;c3;c4;c5;c6;c7;c8;c9], because the software
interprets this vector as the 9-element form

c c c

c c c

c c c

c

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 4 7 0 0 0 0 0 0

2 5 8 0 0 0 0 0 0

3 6 9 0 0 0 0 0 0

0 0 0 (( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 4 7 0 0 0

0 0 0 2 5 8 0 0 0

0 0 0 3 6 9 0 0 0

0 0 0 0 0 0

c c

c c c

c c c

c(( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 4 7

0 0 0 0 0 0 2 5 8

0 0 0 0 0 0 3 6 3

c c

c c c

c c c

Ê

Ë

Á
Á
Á
Á
Á
Á
Á
Á
ÁÁ
Á
Á
Á
Á
Á
ÁÁ

ˆ

¯

˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜̃

.

Instead, use one of these forms:

• 6N-element form — [c1;0;c2;0;0;c3;c4;0;c5;0;0;c6;c7;0;c8;0;0;c9]

• 9N-element form —
[c1;0;0;0;c2;0;0;0;c3;c4;0;0;0;c5;0;0;0;c6;c7;0;0;0;c8;0;0;0;c9]
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6N-Element Column Vector c, 3-D Systems

The software interprets a 6N-element column vector c as a symmetric block diagonal
matrix. In the following diagram, • means the entry is symmetric.

c c c

c c

c

c c

( ) ( ) ( )

( ) ( )

( )

( ) (

1 2 4 0 0 0 0 0 0

3 5 0 0 0 0 0 0

6 0 0 0 0 0 0

0 0 0 7 8

L

L

L

∑
∑ ∑

)) ( )

( ) ( )

( )

c

c c

c

10 0 0 0

0 0 0 9 11 0 0 0

0 0 0 12 0 0 0

0 0 0 0 0 0

L

L

L

M M M M M M O M M M

∑
∑ ∑
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L

L

c N c N c N

c N c N

c N

( ) ( ) ( )

( ) ( )

(

6 5 6 4 6 2
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0 0 0 0 0 0 6
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Ê

Ë

Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
ÁÁ

ˆ

¯

˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜
˜̃

Coefficient c(i,j,k,l) is in row (6i + k + 1/2l(l–1) – 6) of the vector c.

9N-Element Column Vector c, 3-D Systems

The software interprets a 9N-element column vector c as a block diagonal matrix.

c c c

c c c

c c c

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 4 7 0 0 0 0 0 0

2 5 8 0 0 0 0 0 0

3 6 9 0 0 0 0 0 0

0

L

L

L

00 0 10 13 16 0 0 0

0 0 0 11 14 17 0 0 0

0 0 0 12 15

c c c

c c c

c c c

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

L

L
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(
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0 0 0 0 0 0 9

L

M M M M M M O M M M

L

L

c N c N c N

c N
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- -

Ê

Ë

Á
Á
Á
Á
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Á
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Á
Á
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Coefficient c(i,j,k,l) is in row (9i + 3l + k – 12) of the vector c.

3N(3N+1)/2-Element Column Vector c, 3-D Systems

The software interprets a 3N(3N+1)/2-element column vector c as a symmetric matrix. In
the following diagram, • means the entry is symmetric.

c c c c c c c N N c N( ) ( ) ( ) ( ) ( ) ( ) ( ( )( ( ) ) / ( ( )(1 2 4 7 10 13 3 1 3 1 1 2 1 3 1L - - + + - 33 1 1 2 4 3 1 3 1 1 2 7

3 5 8 11 14

( ) ) / ( ( )( ( ) ) /

( ) ( ) ( ) ( ) (

N c N N

c c c c c

- + + - - + +
∑ )) ( ( )( ( ) ) / ( ( )( ( ) ) / ( ( )( (L c N N c N N c N3 1 3 1 1 2 2 3 1 3 1 1 2 5 3 1 3- - + + - - + + - NN

c c c c c N N c

- + +
∑ ∑ - - + +

1 1 2 8

6 9 12 15 3 1 3 1 1 2 3 3
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N N c N N
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∑ ∑ ∑

1 3 1 1 2 6 3 1 3 1 1 2 9
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( ) ( ) ( ( )( ( ) ) / ( (

3 1 1 2 16

18 20 3 1 3 1 1 2 11 3

N

c c c N N c
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∑ ∑ ∑ ∑ - - + +L NN N c N N
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Coefficient c(i,j,k,l), for i < j, is in row (9(j–1)(j–2)/2 + 6(j–1) + 9i + 3l + k – 12) of the
vector c. For i = j, coefficient c(i,j,k,l) is in row (9(i–1)(i–2)/2 + 15(i–1) + 1/2l(l–1) + k) of
the vector c.

9N2-Element Column Vector c, 3-D Systems

The software interprets a 9N2-element column vector c as a matrix.
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Coefficient c(i,j,k,l) is in row (9N(j–1) + 9i + 3l + k – 12) of the vector c.

Related Examples
• “f Coefficient for Systems” on page 2-92
• “a or d Coefficient for Systems” on page 2-113
• “Solve Problems Using PDEModel Objects” on page 2-11
• “Deflection of a Piezoelectric Actuator” on page 3-19
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a or d Coefficient for Systems

In this section...

“Coefficients a or d” on page 2-113
“Scalar a or d” on page 2-113
“N-Element Column Vector a or d” on page 2-114
“N(N+1)/2-Element Column Vector a or d” on page 2-114

“N2-Element Column Vector a or d” on page 2-115

Coefficients a or d

This section describes how to write the coefficients a or d in the equation

d c au f
u

u
∂

∂
—-— ◊ ƒ( ) + =

t

,

or in similar equations. a and d are N-by-N matrices, where N is the number of
equations, see “Systems of PDEs” on page 2-58.

Express the coefficients as numbers, text expressions, or functions, as in “f Coefficient for
Systems” on page 2-92.

The number of rows in the matrix is either 1, N, N(N+1)/2, or N2, as described in the
next few sections. If you choose to express the coefficients in functional form, the number
of columns is Nt, which is the number of triangles in the mesh. The function should
evaluate a or d at the triangle centroids, as in “Specify 2-D Scalar Coefficients in
Function Form” on page 2-67. Give solvers the function name as a string 'filename',
or as a function handle @filename, where filename.m is a file on your MATLAB path.
For details on how to write the function, see “Calculate Coefficients in Function Form” on
page 2-68.

Often, a or d have structure, either as symmetric or diagonal. In these cases, you can
represent a or d using fewer than N2 rows.

Scalar a or d

The software interprets a scalar a or d as a diagonal matrix.
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N-Element Column Vector a or d

The software interprets an N-element column vector a or d as a diagonal matrix.
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For example, if N = 3, a or d could be

a = char('sin(x) + cos(y)','cosh(x.*y)','x.*y./(1+x.^2+y.^2)') % or d

a =

sin(x) + cos(y)    

cosh(x.*y)         

x.*y./(1+x.^2+y.^2)

N(N+1)/2-Element Column Vector a or d

The software interprets an N(N+1)/2-element column vector a or d as a symmetric
matrix. In the following diagram, • means the entry is symmetric.
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Coefficient a(i,j) is in row (j(j–1)/2+i) of the vector a.
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N2-Element Column Vector a or d

The software interprets an N2-element column vector a or d as a matrix.

d d N d N N

d d N d N N

d N d N d N
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Coefficient a(i,j) is in row (N(j–1)+i) of the vector a.

Related Examples
• “f Coefficient for Systems” on page 2-92
• “c Coefficient for Systems” on page 2-95
• “Solve Problems Using PDEModel Objects” on page 2-11
• “Deflection of a Piezoelectric Actuator” on page 3-19
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Initial Conditions

Initial conditions has two meanings:

• For the parabolic and hyperbolic solvers, the initial condition u0 is the solution
u at the initial time. You must specify the initial condition for these solvers. Pass the
initial condition in the first argument or arguments.

u = parabolic(u0,...

or

u = hyperbolic(u0,ut0,...

For the hyperbolic solver, you must also specify ut0, which is the value of the
derivative of u with respect to time at the initial time. ut0 has the same form as u0.

• For nonlinear elliptic problems, the initial condition u0 is a guess or approximation of
the solution u at the initial iteration of the pdenonlin nonlinear solver. You pass u0
in the 'U0' name-value pair.

u = pdenonlin(b,p,e,t,c,a,f,'U0',u0)

If you do not specify initial conditions, pdenonlin uses the zero function for the
initial iteration.

Pass u0 as a column vector of values at the points p in the usual p, t, e mesh. See “Mesh
Data” on page 2-161. You can also pass a scalar, which means the initial condition is a
constant value.

Tip For reliability, the initial conditions and boundary conditions should be consistent.

The size of the column vector u0 depends on the number of equations, N, and on the
number of points in the mesh, Np.

For scalar u, specify a column vector of length Np. The value of element k corresponds to
the point p(k).

For a system of N equations, specify a column vector of N*Np elements. The first Np
elements contain the values of component 1, where the value of element k corresponds
to point p(k). The next Np points contain the values of component 2, etc. It can be
convenient to first represent the initial conditions u0 as an Np-by-N matrix, where the
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first column contains entries for component 1, the second column contains entries for
component 2, etc. The final representation of the initial conditions is u0(:).

For example, suppose you have a function myfun(x,y) that calculates the value of the
initial condition u0(x,y) as a row vector of length N. Suppose that p is the usual mesh
point data (see “Mesh Data” on page 2-161). Compute the initial conditions for all
mesh points p.

% Assume N and p exist; N = 1 for a scalar problem

np = size(p,2); % Number of mesh points

u0 = zeros(np,N); % Allocate initial matrix

for k = 1:np

    x = p(1,k);

    y = p(2,k);

    u0(k,:) = myfun(x,y); % Fill in row k

end

u0 = u0(:); % Convert to column form

Specify u0 as the initial condition.

For the parabolic and hyperbolic solvers with scalar problems, you can also specify
text expressions for the initial conditions. The initial conditions are functions of x and y
alone, and, for 3-D problems, z.

For example, if you have an initial condition

u x y
xy x

x y

( , )
cos( )

,=

+ +1 2 2

then you can use this expression for the initial condition.

'x.*y.*cos(x)./(1+x.^2+y.^2)'

See Also
hyperbolic | parabolic | pdenonlin

Related Examples
• “Solve Problems Using PDEModel Objects” on page 2-11

More About
• “Mesh Data” on page 2-161
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• “Systems of PDEs” on page 2-58
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No Boundary Conditions Between Subdomains

There are two types of boundaries:

• Boundaries between the interior of the region and the exterior of the region
• Boundaries between subdomains—these are boundaries in the interior of the region

Boundary conditions, either Dirichlet or generalized Neumann, apply only to boundaries
between the interior and exterior of the region. This is because the toolbox formulation
uses the weak form of PDEs; see “Finite Element Method (FEM) Basics” on page 1-25. In
the weak formulation you do not specify boundary conditions between subdomains, even
if coefficients are discontinuous between subdomains. So Partial Differential Equation
Toolbox does not support defining boundary conditions on subdomain boundaries.

For example, look at a rectangular region with a circular subdomain. The red numbers
are the subdomain labels, the black numbers are the edge segment labels.
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Code for generating the figure

% Rectangle is code 3, 4 sides,

% followed by x-coordinates and then y-coordinates

R1 = [3,4,-1,1,1,-1,-.4,-.4,.4,.4]';

% Circle is code 1, center (.5,0), radius .2

C1 = [1,.5,0,.2]';

% Pad C1 with zeros to enable concatenation with R1

C1 = [C1;zeros(length(R1)-length(C1),1)];

geom = [R1,C1];

% Names for the two geometric objects

ns = (char('R1','C1'))';
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% Set formula

sf = 'R1+C1';

% Create geometry

gd = decsg(geom,sf,ns);

% View geometry

pdegplot(gd,'EdgeLabels','on','SubdomainLabels','on')

xlim([-1.1 1.1])

axis equal

You need not give boundary conditions on segments 5, 6, 7, and 8, because these are
subdomain boundaries, not exterior boundaries.

However, if the circle is a hole, meaning it is not part of the region, then you do give
boundary conditions on segments 5, 6, 7, and 8. For an example, see “Solve PDE with
Coefficients in Functional Form” on page 2-72.
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Identify Boundary Labels

You can see the edge labels by using the pdegplot function with the EdgeLabels name-
value pair set to 'on':

pdegplot(g,'EdgeLabels','on')

For 3-D problems, set the FaceLabels name-value pair to 'on'.

For example, look at the edge labels for a simple annulus geometry:

e1 = [4;0;0;1;.5;0]; % Outside ellipse

e2 = [4;0;0;.5;.25;0]; % Inside ellipse

ee = [e1 e2]; % Both ellipses

lbls = char('outside','inside'); % Ellipse labels

lbls = lbls'; % Change to columns

sf = 'outside-inside'; % Set formula

dl = decsg(ee,sf,lbls); % Geometry now done

pdegplot(dl,'EdgeLabels','on')
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Forms of Boundary Condition Specification

There are three forms of boundary condition specifications:

• BoundaryCondition object — Use this form to specify boundary conditions for
a PDEModel in a modular fashion. You can specify conditions separately for each
edge or set of edges. This form allows simple specification of piecewise constant
Dirichlet or Neumann boundary conditions, and also allows general functional forms
of boundary conditions. For 3-D geometry, you must use this form. For details, see
“Specify Boundary Conditions Objects” on page 2-127.

• Boundary matrix (2-D only) — Generally, do not attempt to write a boundary matrix
manually. The main use of this form is as an export from the PDE app. For details on
the matrix, see assemb.

• Boundary file (2-D only) — You can write a function to give boundary conditions as
a function of the x and y coordinates, the solution u, and time. This syntax is not
recommended, and exists primarily to support legacy code. To write a function in this
form, see “Boundary Conditions by Writing Functions” on page 2-148.
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Classification of Boundary Conditions

In this section...

“Boundary Conditions for Scalar PDEs” on page 2-125
“Boundary Conditions for Systems of PDEs” on page 2-125

Boundary Conditions for Scalar PDEs

For scalar PDEs, there are two choices of boundary conditions for each edge:

• Dirichlet — On the edge, the solution u satisfies the equation
hu = r,

where h and r can be functions of space (x and y), the solution u, and time. Often, you
take h = 1, and set r to the appropriate value.

• Generalized Neumann boundary conditions — On the edge the solution u satisfies the
equation
r

n c u qu g· .—( ) + =

The coefficient c is the same as the coefficient of the second-order differential operator
in the PDE equation

-— ◊ —( ) + =c u au f .

r

n  is the outward unit normal. q and g are functions defined on ∂Ω, and can be
functions of x, y, the solution u, and, for parabolic and hyperbolic equations, time.

To incorporate these conditions into your problem, see “Specify Boundary Conditions
Objects” on page 2-127.

Boundary Conditions for Systems of PDEs

For systems of PDEs, there are generalized versions of the Dirichlet and Neumann
boundary conditions:

• hu = r represents a matrix h multiplying the solution vector u, and equaling the
vector r.
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• n c qu g hu· ƒ( ) + = + ¢— m , where the notation n c u· ƒ( )—  means the N-by-1 matrix
with (i,1)-component

cos( ) cos( ) sin( ) sin(, , , , , , , , ,a a ac
x

c
y

c
x

i j i j i j1 1 1 2 2 1
∂
∂

+
∂
∂

+
∂
∂

+ aa) , , , ,c
y

ui j

j

N

j2 2

1

∂
∂

Ê

Ë
Á

ˆ

¯
˜

=
Â

where the outward normal vector of the boundary n = ( )cos( ),sin( )a a . For each
edge segment, there are a total of N boundary conditions. The generalized Neumann
condition contains a source ¢h m , where the solver computes Lagrange multipliers µ
such that the Dirichlet conditions are satisfied.

To incorporate these conditions into your problem, see “Specify Boundary Conditions
Objects” on page 2-127.
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Specify Boundary Conditions Objects

Before you create boundary conditions, you need to create a PDEModel container. For
details, see “Solve Problems Using PDEModel Objects” on page 2-11. These steps assume
that you have a container named model, and that the geometry is stored in model.

1 Examine the geometry to see the label of each edge or face.

pdegplot(model,'EdgeLabels','on') % for 2-D

pdegplot(model,'FaceLabels','on') % for 3-D

For an example, see “Identify Boundary Labels” on page 2-122 or “Create and View
3-D Geometry” on page 2-44.

2 Specify the boundary conditions for each edge or face. A Dirichlet boundary condition
is either the value of the solution u on that boundary, or it is a pair of parameters, h
and r, that mean u satisfies the equation
hu = r.

Usually, it is easier and less error-prone to specify u directly rather than using h and
r.

Neumann boundary conditions are, for given parameters q and g, the equation

r

n c u qu g· .—( ) + =

The c argument is the same as in the PDE coefficient. See “Scalar PDE Coefficients”
on page 2-59. For details of boundary conditions, see “Classification of Boundary
Conditions” on page 2-125.

If you do not specify a boundary condition for an edge or face, the default is
Neumann, with zero values for 'g' and 'q'.

3 For systems of equations, specify mixed boundary conditions, meaning different
types of boundary conditions for each component of the solution on each boundary.
See “Dirichlet Boundary Conditions for Systems Using u and EquationIndex” on
page 2-130. For details on Neumann boundary conditions, which use a more
general syntax, see “Neumann Boundary Conditions for Systems” on page 2-131.

4 For each edge or face of the model, set a Dirichlet or Neumann boundary condition
using applyBoundaryCondition. If you have a system of PDEs, you can set a
different boundary condition for each component on each boundary edge or face.
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• If the boundary condition is a constant Dirichlet or generalized Neumann
condition, set boundary conditions by using the syntax in “Specify Constant
Boundary Conditions” on page 2-129. These examples specify a Dirichlet
condition with value v on boundary IDs bid.

applyBoundaryCondition(model,'Face',bid,'u',v); % 3-D geometry

applyBoundaryCondition(model,'Edge',bid,'u',v); % 2-D geometry

These examples specify Neumann conditions with values g and q.

applyBoundaryCondition(model,'Face',bid,'g',g,'q',q); % 3-D geometry

applyBoundaryCondition(model,'Edge',bid,'g',g,'q',q); % 2-D geometry

For systems of equations, see “Specify Constant Boundary Conditions” on page
2-129.

• If the boundary condition is a function of position, time, or the solution u, set
boundary conditions by using the syntax in “Specify Nonconstant Boundary
Conditions” on page 2-138.

Related Examples
• “Solve PDEs with Constant Boundary Conditions” on page 2-133
• “Solve PDEs with Nonconstant Boundary Conditions” on page 2-140
• “Solve Problems Using PDEModel Objects” on page 2-11

More About
• “Specify Constant Boundary Conditions” on page 2-129
• “Specify Nonconstant Boundary Conditions” on page 2-138
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Specify Constant Boundary Conditions

In this section...

“Boundary Condition Parameters” on page 2-129
“Scalar Dirichlet Boundary Conditions Using u” on page 2-129
“Scalar Neumann Boundary Conditions” on page 2-130
“Dirichlet Boundary Conditions for Systems Using u and EquationIndex” on page
2-130
“Dirichlet Boundary Conditions for Systems Using the (r,h) Pair” on page 2-131
“Neumann Boundary Conditions for Systems” on page 2-131

Boundary Condition Parameters

Specify Dirichlet boundary conditions for edges or faces by setting the 'u' argument
in applyBoundaryCondition. You can also specify Dirichlet boundary conditions by
giving parameters h and r for the equation
hu = r,

where u is the value of the solution on the edge. Usually, it is easier and less error-prone
to use the 'u' argument than the 'h' and 'r' arguments.

Specify Neumann boundary conditions for edges or faces by giving parameters q and g for
the equation

r

n c u qu g· .—( ) + =

For details, see “Classification of Boundary Conditions” on page 2-125.

If you do not specify a boundary condition for an edge or face, the default is Neumann
with the default zero values for 'g' and 'q'. See “Input Arguments” on page 6-105.

Scalar Dirichlet Boundary Conditions Using u

Suppose that you have a PDE model named model, and edge or face labels [e1,e2,e3]
where the solution u must equal a constant C0. Express this boundary condition as
follows.
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% For 3-D geometry:

applyBoundaryCondition(model,'Face',[e1,e2,e3],'u',C0);

% For 2-D geometry:

applyBoundaryCondition(model,'Edge',[e1,e2,e3],'u',C0);

Scalar Neumann Boundary Conditions

Suppose that you have a PDE model named model, and edge or face labels [e1,e2,e3]
where the solution u must satisfy

r

n c u qu g· —( ) + =

where q and g are constants Q0 and G0 respectively, and c is the coefficient of the second-
order differential operator in the PDE equation. Express this boundary condition as
follows.

% For 3-D geometry:

applyBoundaryCondition(model,'Face',[e1,e2,e3],'q',Q0,'g',G0);

% For 2-D geometry:

applyBoundaryCondition(model,'Edge',[e1,e2,e3],'q',Q0,'g',G0);

Dirichlet Boundary Conditions for Systems Using u and EquationIndex

Suppose that you have a PDE model named model, and edge or face labels [e1,e2,e3]
where the second and third components of the solution u must equal a constant C0.
Express this boundary condition as follows.

% For 3-D geometry:

applyBoundaryCondition(model,'Face',[e1,e2,e3],'u',[C0,C0],'EquationIndex',[2,3]);

% For 2-D geometry:

applyBoundaryCondition(model,'Edge',[e1,e2,e3],'u',[C0,C0],'EquationIndex',[2,3]);

If the second component must equal C0 and the third component must equal C1:

% For 3-D geometry:

applyBoundaryCondition(model,'Face',[e1,e2,e3],'u',[C0,C1],'EquationIndex',[2,3]);

% For 2-D geometry:

applyBoundaryCondition(model,'Edge',[e1,e2,e3],'u',[C0,C1],'EquationIndex',[2,3]);

• Generally, the 'u' and 'EquationIndex' arguments must have the same length.
• If you exclude the 'EquationIndex' argument, the 'u' argument must have length

N.
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• If you exclude the 'u' argument, applyBoundaryCondition sets the components in
'EquationIndex' to 0.

Dirichlet Boundary Conditions for Systems Using the (r,h) Pair

Suppose that you have a PDE model named model, and edge or face labels [e1,e2,e3]
where the second and third components of the solution u must equal a constant C0.
Express this boundary condition as follows.

H0 = [0,0,0;

    0,1,0;

    0,0,1];

R0 = [0;C0;C0];

% For 3-D geometry:

applyBoundaryCondition(model,'Face',[e1,e2,e3],'h',H0,'r',R0);

% For 2-D geometry:

applyBoundaryCondition(model,'Edge',[e1,e2,e3],'h',H0,'r',R0);

If the second component must equal C0 and the third component must equal C1, use the
following code.

H0 = [0,0,0;

    0,1,0;

    0,0,1];

R0 = [0;C0;C1];

% For 3-D geometry:

applyBoundaryCondition(model,'Face',[e1,e2,e3],'h',H0,'r',R0);

% For 2-D geometry:

applyBoundaryCondition(model,'Edge',[e1,e2,e3],'h',H0,'r',R0);

• The 'r' parameter must be a numeric vector of length N. If you do not include 'r',
applyBoundaryCondition sets the values to 0.

• The 'h' parameter can be an N-by-N numeric matrix or a vector of length N2

corresponding to the “Linear Indexing” form of the N-by-N matrix. If you do not
include 'h', applyBoundaryCondition sets the value to the identity matrix.

Neumann Boundary Conditions for Systems

Suppose that you have a geometry container named pg, and edge or face labels
[e1,e2,e3] where the solution u must satisfy

n c qu gu· ƒ( ) + =—



2 Setting Up Your PDE

2-132

where q and g are constant matrices Q0 and G0 respectively, and c is the coefficient
of the second-order differential operator in the PDE equation. Express this boundary
condition as follows.

% For 3-D geometry:

applyBoundaryCondition(model,'Face',[e1,e2,e3],'q',Q0,'g',G0);

% For 2-D geometry:

applyBoundaryCondition(model,'Edge',[e1,e2,e3],'q',Q0,'g',G0);

• The 'g' parameter must be a numeric vector of length N. If you do not include 'g',
applyBoundaryCondition sets the values to 0.

• The 'q' parameter can be an N-by-N numeric matrix or a vector of length N2

corresponding to the “Linear Indexing” form of the N-by-N matrix. If you do not
include 'q', applyBoundaryCondition sets the values to 0.

Related Examples
• “Solve PDEs with Constant Boundary Conditions” on page 2-133
• “Solve Problems Using PDEModel Objects” on page 2-11

More About
• “Specify Boundary Conditions Objects” on page 2-127
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Solve PDEs with Constant Boundary Conditions

This example shows how to apply various constant boundary condition specifications for
both scalar PDEs and systems of PDEs.

Geometry

All the specifications use the same 2-D geometry, which is a rectangle with a circular
hole.

% Rectangle is code 3, 4 sides, followed by x-coordinates and then y-coordinates

R1 = [3,4,-1,1,1,-1,-.4,-.4,.4,.4]';

% Circle is code 1, center (.5,0), radius .2

C1 = [1,.5,0,.2]';

% Pad C1 with zeros to enable concatenation with R1

C1 = [C1;zeros(length(R1)-length(C1),1)];

geom = [R1,C1];

% Names for the two geometric objects

ns = (char('R1','C1'))';

% Set formula

sf = 'R1-C1';

% Create geometry

g = decsg(geom,sf,ns);

% Create geometry model

model = createpde;

% Include the geometry in the model and view the geometry

geometryFromEdges(model,g);

pdegplot(model,'EdgeLabels','on');

xlim([-1.1 1.1])

axis equal
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Scalar Problem

Suppose that edge 3 has Dirichlet conditions with value 32, edge 1 has Dirichlet
conditions with value 72, and all other edges have Neumann boundary conditions with
q = 0, g = –1.

applyBoundaryCondition(model,'Edge',3,'u',32);

applyBoundaryCondition(model,'Edge',1,'u',72);

applyBoundaryCondition(model,'Edge',[2,4:8],'g',-1);

This completes the boundary condition specification.
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Solve an elliptic PDE with these boundary conditions with c = 1, a = 0, and f = 10.
Because the shorter rectangular side has length 0.8, to ensure that the mesh is not too
coarse choose a maximum mesh size Hmax = 0.1.

c = 1;

a = 0;

f = 10;

generateMesh(model,'Hmax',0.1);

u = assempde(model,c,a,f);

pdeplot(model,'xydata',u,'zdata',u)

view(-23,8)

System of PDEs

Suppose that the system has N = 2.
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• Edge 3 has Dirichlet conditions with values [32,72].
• Edge 1 has Dirichlet conditions with values [72,32].
• Edge 4 has a Dirichlet condition for the first component with value 52, and has a

Neumann condition for the second component with q = 0, g = –1.
• Edge 2 has Neumann boundary conditions with q = [1,2;3,4] and g = [5,–6].
• The circular edges (edges 5 through 8) have q = 0 and g = 0.

model = createpde(2);

geometryFromEdges(model,g);

applyBoundaryCondition(model,'Edge',3,'u',[32,72]);

applyBoundaryCondition(model,'Edge',1,'u',[72,32]);

applyBoundaryCondition(model,'Edge',4,'u',52,'EquationIndex',1);

applyBoundaryCondition(model,'Edge',4,'g',[0,-1]);

Q2 = [1,2;3,4];

G2 = [5,-6];

applyBoundaryCondition(model,'Edge',2,'q',Q2,'g',G2);

% The next step is optional, because it sets 'g' to its default value

applyBoundaryCondition(model,'Edge',5:8,'g',[0,0]);

This completes the boundary condition specification.

Solve an elliptic PDE with these boundary conditions using c = 1, a = 0, and f = [10;–10].
Because the shorter rectangular side has length 0.8, to ensure that the mesh is not too
coarse choose a maximum mesh size Hmax = 0.1.

c = 1;

a = 0;

f = [10;-10];

generateMesh(model,'Hmax',0.1);

u = assempde(model,c,a,f);

u2 = reshape(u,[],2);

pdeplot(model,'xydata',u2(:,2),'zdata',u2(:,2));
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More About
• “Specify Boundary Conditions Objects” on page 2-127
• “Specify Constant Boundary Conditions” on page 2-129
• “Solve PDEs with Nonconstant Boundary Conditions” on page 2-140
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Specify Nonconstant Boundary Conditions

Specify Dirichlet boundary conditions for edges or faces by setting the 'u' argument
in applyBoundaryCondition. You can also specify Dirichlet boundary conditions by
giving parameters h and r for the equation
hu = r,

where u is the value of the solution on the edge. Usually, it is easier and less error-prone
to use the 'u' argument than the 'h' and 'r' arguments.

Specify Neumann boundary conditions for edges or faces by giving parameters q and g for
the equation

r

n c u qu g· .—( ) + =

For details, see “Classification of Boundary Conditions” on page 2-125.

If you do not specify a boundary condition for an edge or face, the default is Neumann
with the default zero values for 'g' and 'q'. See “Input Arguments” on page 6-105.

When you cannot express your boundary conditions by constant input arguments, write
functions.

applyBoundaryCondition(model,'Edge',1,'r',@myrfun);

applyBoundaryCondition(model,'Face',2,'g',@mygfun,'q',@myqfun);

applyBoundaryCondition(model,'Edge',[3,4],'u',@myufun,'EquationIndex',[2,3]);

Each function must have the following syntax.

function bcMatrix = myfun(region,state)

Partial Differential Equation Toolbox solvers pass the region and state data to your
function.

• region — A structure containing the following fields. If you pass a name-value pair
to applyBoundaryCondition with Vectorized set to 'on', then region can
contain several evaluation points. If you do not set Vectorized, or set it to 'off',
then solvers pass just one evaluation point at a time.

• region.x — The x-coordinate of the point or points
• region.y — The y-coordinate of the point or points
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• region.z — For 3-D geometry, the z-coordinate of the point or points

Furthermore, if there are Neumann conditions, then solvers pass the following data in
the region structure.

• region.nx — x-component of the normal vector at the evaluation point or points
• region.ny — y-component of the normal vector at the evaluation point or points
• region.nz — For 3-D geometry, z-component of the normal vector at the

evaluation point or points
• state — For transient or nonlinear problems.

• state.u contains the solution vector at evaluation points. state.u is an N-by-M
matrix, where each column corresponds to one evaluation point, and M is the
number of evaluation points.

• state.time contains the time at evaluation points. state.time is a scalar.

Your function returns bcMatrix. This matrix has the following form, depending on the
boundary condition type.

• 'u' — N1-by-M matrix, where each column corresponds to one evaluation
point, and M is the number of evaluation points. N1 is the number of elements
in the 'EquationIndex' argument (see EquationIndex). If there is no
'EquationIndex' argument, then N1 = N.

• 'r' or 'g' — N-by-M matrix, where each column corresponds to one evaluation point,
and M is the number of evaluation points.

• 'h' or 'q' — N2-by-M matrix, where each column corresponds to one evaluation
point via “Linear Indexing” of the underlying N-by-N matrix, and M is the number of
evaluation points. Alternatively, an N-by-N-by-M array, where each evaluation point is
an N-by-N matrix.

Related Examples
• “Solve PDEs with Nonconstant Boundary Conditions” on page 2-140
• “Solve Problems Using PDEModel Objects” on page 2-11

More About
• “Specify Boundary Conditions Objects” on page 2-127
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Solve PDEs with Nonconstant Boundary Conditions

This example shows how to write functions for a nonconstant boundary condition
specification.

All the specifications use the same geometry, which is a rectangle with a circular hole.

% Rectangle is code 3, 4 sides, followed by x-coordinates and then y-coordinates

R1 = [3,4,-1,1,1,-1,-.4,-.4,.4,.4]';

% Circle is code 1, center (.5,0), radius .2

C1 = [1,.5,0,.2]';

% Pad C1 with zeros to enable concatenation with R1

C1 = [C1;zeros(length(R1)-length(C1),1)];

geom = [R1,C1];

% Names for the two geometric objects

ns = (char('R1','C1'))';

% Set formula

sf = 'R1-C1';

% Create geometry

g = decsg(geom,sf,ns);

% Create geometry model

model = createpde;

% Include the geometry in the model and view the geometry

geometryFromEdges(model,g);

pdegplot(model,'EdgeLabels','on');

xlim([-1.1 1.1])

axis equal
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Scalar Problem

• Edge 3 has Dirichlet conditions with value 32.
• Edge 1 has Dirichlet conditions with value 72.
• Edges 2 and 4 have Dirichlet conditions that linearly interpolate between edges 1 and

3.
• The circular edges (5 through 8) have Neumann conditions with q = 0, g = –1.

applyBoundaryCondition(model,'Edge',3,'u',32);

applyBoundaryCondition(model,'Edge',1,'u',72);

applyBoundaryCondition(model,'Edge',5:8,'g',-1); % q = 0 by default
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Edges 2 and 4 need functions that perform the linear interpolation. Each edge can use
the same function that returns the value
u(x,y) = 52 + 20*x.

You can implement this simple interpolation in an anonymous function.

myufun = @(region,state)52+20*region.x;

Include the function for edges 2 and 4. To help speed the solver, allow a vectorized
evaluation.

applyBoundaryCondition(model,'Edge',[2,4],'u',myufun,'Vectorized','on');

Solve an elliptic PDE with these boundary conditions, using the parameters c = 1, a = 0,
and f = 10. Because the shorter rectangular side has length 0.8, to ensure that the mesh
is not too coarse choose a maximum mesh size Hmax = 0.1.

c = 1;

a = 0;

f = 10;

generateMesh(model,'Hmax',0.1);

u = assempde(model,c,a,f);

pdeplot(model,'xydata',u)
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System of PDEs

Suppose that the system has N = 2.

• Edge 3 has Dirichlet conditions with values [32,72].
• Edge 1 has Dirichlet conditions with values [72,32].
• Edges 2 and 4 have Dirichlet conditions that interpolate between the conditions on

edges 1 and 3, and include a sinusoidal variation.
• Circular edges (edges 5 through 8) have q = 0 and g = –10

model = createpde(2);

geometryFromEdges(model,g);
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applyBoundaryCondition(model,'Edge',3,'u',[32,72]);

applyBoundaryCondition(model,'Edge',1,'u',[72,32]);

applyBoundaryCondition(model,'Edge',5:8,'g',[-10,-10]);

The first component of edges 2 and 4 satisfies the equation
u1(x) = 52 + 20*x + 10*sin(πx3).

The second component satisfies
u2(x) = 52 – 20*x – 10*sin(πx3).

Write a function file myufun.m that incorporates these equations in the syntax from
“Specify Nonconstant Boundary Conditions” on page 2-138.

function bcMatrix = myufun(region,state)

bcMatrix = [52 + 20*region.x + 10*sin(pi*(region.x.^3));

    52 - 20*region.x - 10*sin(pi*(region.x.^3))]; % OK to vectorize

Include this function in the edge 2 and edge 4 boundary condition.

clear myufun % In case you have myufun in your workspace from the scalar case

applyBoundaryCondition(model,'Edge',[2,4],'u',@myufun,'Vectorized','on');

Solve an elliptic PDE with these boundary conditions, with the parameters c = 1, a = 0,
and f = (10,–10). Because the shorter rectangular side has length 0.8, to ensure that the
mesh is not too coarse choose a maximum mesh size Hmax = 0.1.

c = 1;

a = 0;

f = [10;-10];

generateMesh(model,'Hmax',0.1);

u = assempde(model,c,a,f);

u2 = reshape(u,[],2);

subplot(1,2,1)

pdeplot(model,'xydata',u2(:,1),'zdata',u2(:,1),'colorbar','off')

view(-9,24)

subplot(1,2,2)

pdeplot(model,'xydata',u2(:,2),'zdata',u2(:,2),'colorbar','off')

view(-9,24)
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Changes to Boundary Conditions Object From R2014b

Release 2014b of Partial Differential Equation Toolbox introduced an object-oriented
approach for specifying boundary conditions. Release 2015a changed the boundary
condition objects and workflow as summarized in this table.

Functionality What Happens
When You Use This
Functionality

Use This Instead Compatibility
Considerations

pde

Create problem
container

Still runs

The returned type is
a PDEModel object.

createpde Use createpde to
create a PDEModel
that holds the PDE
analysis data.

Replace all instances
of pde with
createpde

The pde class
was a value class.
The replacement
PDEModel class is a
handle class.

pdeBoundaryConditionsStill runs.

The returned
type is a
BoundaryCondition

object instead of a
pdeBoundaryConditions

object.

applyBoundaryConditionReplace all
instances of
pdeBoundaryConditions(ApplicationRegion,...)

with
applyBoundaryCondition(model,'Edge',EdgeID,...)

The
pdeBoundaryConditions

class was a
value class. The
replacement
BoundaryCondition

class is a handle
class.

Loading a
pdeBoundaryConditions

Errors applyBoundaryConditionRecreate the
Boundary
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Functionality What Happens
When You Use This
Functionality

Use This Instead Compatibility
Considerations

object from a MAT
file.

Conditions using
applyBoundaryCondition

pdeGeometryFromEdgesStill runs. The
returned type is an
AnalyticGeometry

object instead of a
pdeGeometry object.

geometryFromEdgesCall
geometryFromEdges

to append the
geometry to the
PDEModel.

The pdeGeometry
class was a
value class. The
replacement
AnalyticGeometry

class is a handle
class.

Function handle
for specifying
nonconstant
Boundary Conditions
and Coefficients
of the form
@f(problem,

region,state)

Still runs. Define a function
handle that takes
only two arguments
as follows:

@f(region,state)

Reduce the
argument list in
the function handle
definitions you may
have created for
Boundary Conditions
or Coefficients.
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Boundary Conditions by Writing Functions

In this section...

“About Boundary Conditions by Writing Functions” on page 2-148
“Boundary Conditions for Scalar PDE” on page 2-148
“Boundary Conditions for PDE Systems” on page 2-153

About Boundary Conditions by Writing Functions

This section shows how to express boundary conditions for 2-D geometry using the legacy
function syntax. However, the recommended way to express boundary conditions is to use
“Specify Boundary Conditions Objects” on page 2-127.

To use this legacy syntax, write the functions using the templates in “Boundary
Conditions for Scalar PDE” on page 2-148 or “Boundary Conditions for PDE Systems”
on page 2-153.

Boundary Conditions for Scalar PDE

For a scalar PDE, some boundary segments can have Dirichlet conditions, and some
boundary segments can have generalized Neumann conditions.

Dirichlet boundary conditions are
hu = r,

where h and r can be functions of x, y, the solution u, the edge segment index, and, for
parabolic and hyperbolic equations, time.

Generalized Neumann boundary conditions are rn c u qu g· —( ) + =  on ∂Ω.

r

n  is the outward unit normal. g and q are functions defined on ∂Ω, and can be functions
of x, y, the solution u, the edge segment index, and, for parabolic and hyperbolic
equations, time.

To write a function file, say pdebound.m, use the following syntax:

[qmatrix,gmatrix,hmatrix,rmatrix] = pdebound(p,e,u,time)
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Your function returns matrices qmatrix, gmatrix, hmatrix, and rmatrix, based on
these inputs:

• p — Points in the mesh (“Mesh Data” on page 2-161)
• e — Finite element edges in the mesh, a subset of all the edges (“Mesh Data” on page

2-161)
• u — Solution of the PDE
• time — Time, for parabolic or hyperbolic PDE only

If your boundary conditions do not depend on u or time, those inputs are []. If your
boundary conditions do depend on u or time, then when u or time are NaN, ensure that
the outputs such as qmatrix consist of matrices of NaN of the correct size. This signals to
solvers, such as parabolic, to use a time-dependent or solution-dependent algorithm.

Before specifying boundary conditions, you need to know the boundary labels. See
“Identify Boundary Labels” on page 2-122.

The PDE solver, such as assempde or adaptmesh, passes a matrix p of points and e of
edges. e has seven rows and ne columns, where you do not necessarily know in advance
the size ne.

• p is a 2-by-Np matrix, where p(1,k) is the x-coordinate of point k, and p(2,k) is the
y-coordinate of point k.

• e is a 7-by-ne matrix, where

• e(1,k) is the index of the first point of edge k.
• e(2,k) is the index of the second point of edge k.
• e(5,k) is the label of the geometry edge of edge k (see “Identify Boundary Labels”

on page 2-122).

e contains an entry for every finite element edge that lies on an exterior boundary.

Use the following template for your boundary file.

function [qmatrix,gmatrix,hmatrix,rmatrix] = pdebound(p,e,u,time)

ne = size(e,2); % number of edges

qmatrix = zeros(1,ne);

gmatrix = qmatrix;
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hmatrix = zeros(1,2*ne);

rmatrix = hmatrix;

for k = 1:ne

    x1 = p(1,e(1,k)); % x at first point in segment

    x2 = p(1,e(2,k)); % x at second point in segment

    xm = (x1 + x2)/2; % x at segment midpoint

    y1 = p(2,e(1,k)); % y at first point in segment

    y2 = p(2,e(2,k)); % y at second point in segment

    ym = (y1 + y2)/2; % y at segment midpoint

    switch e(5,k)

        case {some_edge_labels}

            % Fill in hmatrix,rmatrix or qmatrix,gmatrix

        case {another_list_of_edge_labels}

            % Fill in hmatrix,rmatrix or qmatrix,gmatrix

        otherwise

            % Fill in hmatrix,rmatrix or qmatrix,gmatrix

    end

end

For each column k in e, entry k of rmatrix is the value of rmatrix at the first point in
the edge, and entry ne + k is the value at the second point in the edge. For example, if
r = x2 + y4, then write these lines:

rmatrix(k) = x1^2 + y1^4;

rmatrix(k+ne) = x2^2 + y2^4;

The syntax for hmatrix is identical: entry k of hmatrix is the value of r at the first
point in the edge, and entry k + ne is the value at the second point in the edge.

For each column k in e, entry k of qmatrix is the value of qmatrix at the midpoint in
the edge. For example, if q = x2 + y4, then write these lines:

qmatrix(k) = xm^2 + ym^4;

The syntax for gmatrix is identical: entry k of gmatrix is the value of gmatrix at the
midpoint in the edge.

If the coefficients depend on the solution u, use the element u(e(1,k)) as the solution
value at the first point of edge k, and u(e(2,k)) as the solution value at the second
point of edge k.

For example, consider the following geometry, a rectangle with a circular hole.
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Code for generating the figure

% Rectangle is code 3, 4 sides,

% followed by x-coordinates and then y-coordinates

R1 = [3,4,-1,1,1,-1,-.4,-.4,.4,.4]';

% Circle is code 1, center (.5,0), radius .2

C1 = [1,.5,0,.2]';

% Pad C1 with zeros to enable concatenation with R1

C1 = [C1;zeros(length(R1)-length(C1),1)];

geom = [R1,C1];

% Names for the two geometric objects

ns = (char('R1','C1'))';
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% Set formula

sf = 'R1-C1';

% Create geometry

gd = decsg(geom,sf,ns);

% View geometry

pdegplot(gd,'EdgeLabels','on')

xlim([-1.1 1.1])

axis equal

Suppose the boundary conditions on the outer boundary (segments 1 through 4) are
Dirichlet, with the value u(x,y) = t(x – y), where t is time. Suppose the circular boundary
(segments 5 through 8) has a generalized Neumann condition, with q = 1 and g = x2 + y2.

Write the following boundary file to represent the boundary conditions:

function [qmatrix,gmatrix,hmatrix,rmatrix] = pdebound(p,e,u,time)

ne = size(e,2); % number of edges

qmatrix = zeros(1,ne);

gmatrix = qmatrix;

hmatrix = zeros(1,2*ne);

rmatrix = hmatrix;

for k = 1:ne

    x1 = p(1,e(1,k)); % x at first point in segment

    x2 = p(1,e(2,k)); % x at second point in segment

    xm = (x1 + x2)/2; % x at segment midpoint

    y1 = p(2,e(1,k)); % y at first point in segment

    y2 = p(2,e(2,k)); % y at second point in segment

    ym = (y1 + y2)/2; % y at segment midpoint

    switch e(5,k)

        case {1,2,3,4} % rectangle boundaries

            hmatrix(k) = 1;

            hmatrix(k+ne) = 1;

            rmatrix(k) = time*(x1 - y1);

            rmatrix(k+ne) = time*(x2 - y2);

        otherwise % same as case {5,6,7,8}, circle boundaries

            qmatrix(k) = 1;

            gmatrix(k) = xm^2 + ym^2;

    end

end



 Boundary Conditions by Writing Functions

2-153

Boundary Conditions for PDE Systems

The general mixed-boundary conditions for PDE systems of N equations (see “Systems of
PDEs” on page 2-58) are

hu r

n c qu g hu

=

ƒ( ) + = + ¢—· .m
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where the outward normal vector of the boundary n = ( )cos( ),sin( )a a . For each edge
segment there are M Dirichlet conditions and the h-matrix is M-by-N, M ≥ 0. The
generalized Neumann condition contains a source ¢h m  where the solver computes
Lagrange multipliers µ such that the Dirichlet conditions are satisfied.

To write a function file, say pdebound.m, use the following syntax:

[qmatrix,gmatrix,hmatrix,rmatrix] = pdebound(p,e,u,time)

Your function returns matrices qmatrix, gmatrix, hmatrix, and rmatrix, based on
these inputs:

• p — Points in the mesh (“Mesh Data” on page 2-161)
• e — Finite element edges in the mesh, a subset of all the edges (“Mesh Data” on page

2-161)
• u — Solution of the PDE
• time — Time, for parabolic or hyperbolic PDE only

If your boundary conditions do not depend on u or time, those inputs are []. If your
boundary conditions do depend on u or time, then when u or time are NaN, ensure that
the outputs such as qmatrix consist of matrices of NaN of the correct size. This signals to
solvers, such as parabolic, to use a time-dependent or solution-dependent algorithm.
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Before specifying boundary conditions, you need to know the boundary labels. See
“Identify Boundary Labels” on page 2-122.

A PDE solver, such as assempde or adaptmesh, passes a matrix p of points and e of
edges. e has seven rows and ne columns, where you do not necessarily know in advance
the size ne.

• p is a 2-by-Np matrix, where p(1,k) is the x-coordinate of point k, and p(2,k) is the
y-coordinate of point k.

• e is a 7-by-ne matrix, where

• e(1,k) is the index of the first point of edge k.
• e(2,k) is the index of the second point of edge k.
• e(5,k) is the label of the geometry edge of edge k (see “Identify Boundary Labels”

on page 2-122).

e contains an entry for every finite element edge that lies on an exterior boundary.

Let N be the dimension of the system of PDEs; see “Systems of PDEs” on page 2-58. Use
the following template for your boundary file.

function [qmatrix,gmatrix,hmatrix,rmatrix] = pdebound(p,e,u,time)

N = 3; % Set N = the number of equations

ne = size(e,2); % number of edges

qmatrix = zeros(N^2,ne);

gmatrix = zeros(N,ne);

hmatrix = zeros(N^2,2*ne);

rmatrix = zeros(N,2*ne);

for k = 1:ne

    x1 = p(1,e(1,k)); % x at first point in segment

    x2 = p(1,e(2,k)); % x at second point in segment

    xm = (x1 + x2)/2; % x at segment midpoint

    y1 = p(2,e(1,k)); % y at first point in segment

    y2 = p(2,e(2,k)); % y at second point in segment

    ym = (y1 + y2)/2; % y at segment midpoint

    switch e(5,k)

        case {some_edge_labels}

            % Fill in hmatrix,rmatrix or qmatrix,gmatrix

        case {another_list_of_edge_labels}

            % Fill in hmatrix,rmatrix or qmatrix,gmatrix
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        otherwise

            % Fill in hmatrix,rmatrix or qmatrix,gmatrix

        

    end

end

For the boundary file, you represent the matrix h for each edge segment as a vector,
taking the matrix column-wise, as hmatrix(:). Column k of hmatrix corresponds to
the matrix at the first edge point e(1,k), and column k + ne corresponds to the matrix
at the second edge point e(2,k).

Similarly, you represent each vector r for an edge as a column in the matrix rmatrix.
Column k corresponds to the vector at the first edge point e(1,k), and column k + ne
corresponds to the vector at the second edge point e(2,k).

Represent the entries for the matrix q for each edge segment as a vector, qmatrix(:),
similar to the matrix hmatrix(:). Similarly, represent g for each edge segment is
a column vector in the matrix gmatrix. Unlike h and r, which have two columns for
each segment, q and g have just one column for each segment, which is the value of the
function at the midpoint of the edge segment.

For example, consider the following geometry, a rectangle with a circular hole.



2 Setting Up Your PDE

2-156

Code for generating the figure

% Rectangle is code 3, 4 sides,

% followed by x-coordinates and then y-coordinates

R1 = [3,4,-1,1,1,-1,-.4,-.4,.4,.4]';

% Circle is code 1, center (.5,0), radius .2

C1 = [1,.5,0,.2]';

% Pad C1 with zeros to enable concatenation with R1

C1 = [C1;zeros(length(R1)-length(C1),1)];

geom = [R1,C1];

% Names for the two geometric objects

ns = (char('R1','C1'))';
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% Set formula

sf = 'R1-C1';

% Create geometry

gd = decsg(geom,sf,ns);

% View geometry

pdegplot(gd,'EdgeLabels','on')

xlim([-1.1 1.1])

axis equal

Suppose N = 3. Suppose the boundary conditions are mixed. There is M = 1 Dirichlet
condition:

• The first component of u = 0 on the rectangular segments (numbers 1–4). So h(1,1) = 1
and r(1) = 0 for those segments.

• The second components of u = 0 on the circular segments (numbers 5–8). So h(2,2) = 1
and r(2) = 0 for those segments.

• On the rectangular segments (numbers 1–4),

q =
Ê

Ë
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Á

ˆ

¯
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˜
˜
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• On the circular segments (numbers 5–8),
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g =
+
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cos( )

tanh( )

p x

x y

0

Write the following boundary file to represent the boundary conditions:

function [qmatrix,gmatrix,hmatrix,rmatrix] = pdebound(p,e,u,time)

N = 3;

ne = size(e,2); % number of edges

qmatrix = zeros(N^2,ne);

gmatrix = zeros(N,ne);

hmatrix = zeros(N^2,2*ne);

rmatrix = zeros(N,2*ne);

for k = 1:ne

    x1 = p(1,e(1,k)); % x at first point in segment

    x2 = p(1,e(2,k)); % x at second point in segment

    xm = (x1 + x2)/2; % x at segment midpoint

    y1 = p(2,e(1,k)); % y at first point in segment

    y2 = p(2,e(2,k)); % y at second point in segment

    ym = (y1 + y2)/2; % y at segment midpoint

    switch e(5,k)

        case {1,2,3,4}

            hk = zeros(N);

            hk(1,1) = 1;

            hk = hk(:);

            hmatrix(:,k) = hk;

            hmatrix(:,k+ne) = hk;

            

            rk = zeros(N,1); % Not strictly necessary

            rmatrix(:,k) = rk; % These are already 0

            rmatrix(:,k+ne) = rk;

            

            qk = zeros(N);

            qk(1,2) = 1;

            qk(1,3) = 1;

            qk(3,1) = 1;

            qk(3,2) = 1;

            qk = qk(:);

            qmatrix(:,k) = qk;

            



 Boundary Conditions by Writing Functions

2-159

            gk = zeros(N,1);

            gk(1) = 1+xm^2;

            gk(3) = 1+ym^2;

            gmatrix(:,k) = gk;

            

        case {5,6,7,8}

            hk = zeros(N);

            hk(2,2) = 1;

            hk = hk(:);

            hmatrix(:,k) = hk;

            hmatrix(:,k+ne) = hk;

            

            rk = zeros(N,1); % Not strictly necessary

            rmatrix(:,k) = rk; % These are already 0

            rmatrix(:,k+ne) = rk;

            qk = zeros(N);

            qk(1,2) = 1+xm^2;

            qk(1,3) = 2+ym^2;

            qk(3,1) = 1+xm^4;

            qk(3,2) = 1+ym^4;

            qk = qk(:);

            qmatrix(:,k) = qk;

            

            gk = zeros(N,1);

            gk(1) = cos(pi*xm);

            gk(3) = tanh(xm*ym);

            gmatrix(:,k) = gk;

            

        end

end

Related Examples
• “Solve PDE with Coefficients in Functional Form” on page 2-72
• “Deflection of a Piezoelectric Actuator” on page 3-19
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Tooltip Displays for Mesh and Plots

In mesh mode, you can use the mouse to display the node number and the triangle
number at the position where you click. Press the left mouse button to display the node
number on the information line. Use the left mouse button and the Shift key to display
the triangle number on the information line.

In plot mode, you can use the mouse to display the numerical value of the plotted
property at the position where you click. Press the left mouse button to display the
triangle number and the value of the plotted property on the information line.

The information remains on the information line until you release the mouse button.
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Mesh Data

In this section...

“What Is Mesh Data?” on page 2-161
“Mesh Data for FEMesh” on page 2-161
“Mesh Data for [p,e,t] Triples: 2-D” on page 2-161
“Mesh Data for [p,e,t] Triples: 3-D” on page 2-162

What Is Mesh Data?

A mesh consists of either an FEMesh object or a [p,e,t] triple.

• Create a FEMesh object using generateMesh. This object is the Mesh property of the
PDEModel object.

• For a 2-D mesh created using initmesh, the mesh is a [p,e,t] triple.
• You can convert an FEMesh object to a [p,e,t] triple using the meshToPet function.

You need the p and t data to interpolate solutions with pdeInterpolant.

Mesh Data for FEMesh

A FEMesh object contains the points (nodes) of the mesh as well as the elements
(triangles for 2-D, tetrahedra for 3-D) and other data. For details, see FEMesh.

Mesh Data for [p,e,t] Triples: 2-D

For a 2-D mesh produced using either initmesh or meshToPet, the mesh data is as
follows:

• p (points) is a 2-by-Np matrix of points, where Np is the number of points in the mesh.
Each column p(:,k) consists of the x-coordinate of point k in p(1,k), and the y-
coordinate of point k in p(2,k).

• e (edges) is a 7-by-Ne matrix of edges, where Ne is the number of edges in the mesh.
An edge is a pair of points in p containing either a boundary between subdomains, or
containing an outer boundary. Each column in the e matrix represents one edge, with
the following data:
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• e(1,k) is the index of the first point in edge k.
• e(2,k) is the index of the second point in edge k.
• e(3,k) is the parameter value at the first point of edge k. The parameter value is

related to arc length along the edge.
• e(4,k) is the parameter value at the second point of edge k.
• e(5,k) is the segment number of the geometry containing the edge.

The segment number is inherited from the edge segments in the base
geometry. You can see geometry segment numbers using the command
pdegplot(geom,'EdgeLabels','on').

• e(6,k) is the subdomain number on the left side of the edge (subdomain 0 is the
exterior of the geometry), where direction along the edge is given by increasing
parameter values.

• e(7,k) is the subdomain number on the right side of the edge.
• t (triangles) is a 4-by-Nt matrix of triangles, where Nt is the number of triangles

in the mesh. t(1,k), t(2,k), and t(3,k) contain indices to the three points in p
that form triangle k. The points are in counterclockwise order. t(4,k) contains the
subdomain number of the triangle.

Mesh Data for [p,e,t] Triples: 3-D

For a 3-D mesh produced using meshToPet, the mesh data is as follows:

• p (points) is a 3-by-Np matrix of points, where Np is the number of points in the
mesh. Each column p(:,k) consists of the x-coordinate of point k in p(1,k), the y-
coordinate of point k in p(2,k), and the z-coordinate of point k in p(3,k).

• e is an object that associates the mesh faces to the geometry boundary. Partial
Differential Equation Toolbox functions use this association when converting the
boundary conditions, which you set on geometry boundaries, to the mesh boundary
faces.

• t (tetrahedra) is either an 11-by-Nt matrix of tetrahedra or a 5-by-Nt matrix
of tetrahedra, depending on whether you called generateMesh with the
GeometricOrder name-value pair set to 'quadratic' or 'linear', respectively.
Nt is the number of tetrahedra in the mesh. Each column of t contains the indices
of the points in p that form the tetrahedron. The exception is the last element in the
column, which is the subdomain number. Tetrahedra points are ordered as shown.
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Related Examples
• “Solve PDE with Coefficients in Functional Form” on page 2-72
• “Solve Poisson's Equation on a Unit Disk” on page 3-76
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Adaptive Mesh Refinement

In this section...

“Improving Solution Accuracy Using Mesh Refinement” on page 2-164
“Error Estimate for the FEM Solution” on page 2-165
“Mesh Refinement Functions” on page 2-166
“Mesh Refinement Termination Criteria” on page 2-166

Improving Solution Accuracy Using Mesh Refinement

Partial Differential Equation Toolbox software has a function for global, uniform
mesh refinement for 2-D geometry. It divides each triangle into four similar triangles
by creating new corners at the midsides, adjusting for curved boundaries. You can
assess the accuracy of the numerical solution by comparing results from a sequence of
successively refined meshes. If the solution is smooth enough, more accurate results may
be obtained by extrapolation.

The solutions of equations often have geometric features like localized strong gradients.
An example of engineering importance in elasticity is the stress concentration occurring
at reentrant corners such as the MATLAB L-shaped membrane. Then it is more
economical to refine the mesh selectively, i.e., only where it is needed. When the selection
is based on estimates of errors in the computed solutions, a posteriori estimates, we
speak of adaptive mesh refinement. See adaptmesh for an example of the computational
savings where global refinement needs more than 6000 elements to compete with an
adaptively refined mesh of 500 elements.

The adaptive refinement generates a sequence of solutions on successively finer meshes,
at each stage selecting and refining those elements that are judged to contribute most to
the error. The process is terminated when the maximum number of elements is exceeded,
when each triangle contributes less than a preset tolerance, or when an iteration
limit is reached. You can provide an initial mesh, or let adaptmesh call initmesh
automatically. You also choose selection and termination criteria parameters. The
three components of the algorithm are the error indicator function, which computes
an estimate of the element error contribution, the mesh refiner, which selects and
subdivides elements, and the termination criteria.
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Error Estimate for the FEM Solution

The adaptation is a feedback process. As such, it is easily applied to a larger range of
problems than those for which its design was tailored. You want estimates, selection
criteria, etc., to be optimal in the sense of giving the most accurate solution at fixed cost
or lowest computational effort for a given accuracy. Such results have been proved only
for model problems, but generally, the equidistribution heuristic has been found near
optimal. Element sizes should be chosen such that each element contributes the same to
the error. The theory of adaptive schemes makes use of a priori bounds for solutions in
terms of the source function f. For nonelliptic problems such a bound may not exist, while
the refinement scheme is still well defined and has been found to work well.

The error indicator function used in the software is an elementwise estimate of the
contribution, based on the work of C. Johnson et al. [5], [6]. For Poisson's equation –
Δu = f on Ω, the following error estimate for the FEM-solution uh holds in the L2-norm ◊ :

— - £ +( ) ( ),u u hf D uh h ha b

where h = h(x) is the local mesh size, and

D v h
v

n
h

E

( ) .

/

= È

Î
Í

˘

˚
˙

Ê

Ë
Á
Á

ˆ

¯
˜
˜

∂
∂Œ

Â t
t t

2
2

1 2

1

The braced quantity is the jump in normal derivative of v across edge τ, hτ is the length
of edge τ, and the sum runs over Ei, the set of all interior edges of the triangulation. The
coefficients α and β are independent of the triangulation. This bound is turned into an
elementwise error indicator function E(K) for element K by summing the contributions
from its edges.

The general form of the error indicator function for the elliptic equation
–∇ · (c∇u) + au = f
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where n
t

 is the unit normal of edge τ and the braced term is the jump in flux across
the element edge. The L2 norm is computed over the element K. This error indicator is
computed by the pdejmps function.

Mesh Refinement Functions

Partial Differential Equation Toolbox software is geared to elliptic problems. For reasons
of accuracy and ill-conditioning, they require the elements not to deviate too much from
being equilateral. Thus, even at essentially one-dimensional solution features, such as
boundary layers, the refinement technique must guarantee reasonably shaped triangles.

When an element is refined, new nodes appear on its midsides, and if the neighbor
triangle is not refined in a similar way, it is said to have hanging nodes. The final
triangulation must have no hanging nodes, and they are removed by splitting neighbor
triangles. To avoid further deterioration of triangle quality in successive generations,
the “longest edge bisection” scheme Rosenberg-Stenger [8] is used, in which the longest
side of a triangle is always split, whenever any of the sides have hanging nodes. This
guarantees that no angle is ever smaller than half the smallest angle of the original
triangulation.

Two selection criteria can be used. One, pdeadworst, refines all elements with value
of the error indicator larger than half the worst of any element. The other, pdeadgsc,
refines all elements with an indicator value exceeding a user-defined dimensionless
tolerance. The comparison with the tolerance is properly scaled with respect to domain
and solution size, etc.

Mesh Refinement Termination Criteria

For smooth solutions, error equidistribution can be achieved by the pdeadgsc selection
if the maximum number of elements is large enough. The pdeadworst adaptation only
terminates when the maximum number of elements has been exceeded or when the
iteration limit is reached. This mode is natural when the solution exhibits singularities.
The error indicator of the elements next to the singularity may never vanish, regardless
of element size, and equidistribution is too much to hope for.



3

Solving PDEs

• “Solve 2-D PDEs Using the PDE App” on page 3-3
• “Structural Mechanics — Plane Stress” on page 3-7
• “Structural Mechanics — Plane Strain” on page 3-13
• “Clamped, Square Isotropic Plate With a Uniform Pressure Load” on page 3-14
• “Deflection of a Piezoelectric Actuator” on page 3-19
• “Electrostatics” on page 3-33
• “3-D Linear Elasticity Equations in Toolbox Form” on page 3-36
• “Magnetostatics” on page 3-41
• “AC Power Electromagnetics” on page 3-48
• “Conductive Media DC” on page 3-54
• “Heat Transfer” on page 3-61
• “Nonlinear Heat Transfer In a Thin Plate” on page 3-64
• “Diffusion” on page 3-75
• “Solve Poisson's Equation on a Unit Disk” on page 3-76
• “Scattering Problem” on page 3-80
• “Minimal Surface Problem” on page 3-85
• “Domain Decomposition Problem” on page 3-88
• “Heat Equation for Metal Block with Cavity” on page 3-92
• “Heat Distribution in a Radioactive Rod” on page 3-97
• “Wave Equation” on page 3-99
• “Eigenvalues and Eigenfunctions for the L-Shaped Membrane” on page 3-104
• “L-Shaped Membrane with a Rounded Corner” on page 3-108
• “Eigenvalues and Eigenmodes of a Square” on page 3-110
• “Vibration Of a Circular Membrane Using The MATLAB eigs Function” on page

3-114
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• “Solve PDEs Programmatically” on page 3-118
• “Solve Poisson's Equation on a Grid” on page 3-124
• “Plot 3-D Solutions” on page 3-126
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Solve 2-D PDEs Using the PDE App

The layout of the PDE app represents the sequence of steps you perform to solve a PDE.
Specifically, the order of the PDE app menu and toolbar items represent these actions
you perform:

Note: Platform-dependent keyboard accelerators are available for the most common PDE
app activities. Learning to use the accelerator keys may improve the efficiency of your
PDE app sessions.

1 Start the PDE app using pdetool.

At this point, the PDE app is in draw mode, where you can use the four basic solid
objects to draw your Constructive Solid Geometry (CSG) model. You can also edit the
set formula. The solid objects are selected using the five leftmost buttons (or from the
Draw menu).

To the right of the draw mode buttons you find buttons through which you can access
all the functions that you need to define and solve the PDE problem: define boundary
conditions, design the triangular mesh, solve the PDE, and plot the solution.

2 Use the PDE app as a drawing tool to make a drawing of the 2-D geometry on which
you want to solve your PDE. Make use of the four basic solid objects and the grid
and the “snap-to-grid” feature. The PDE app starts in the draw mode, and you can
select the type of object that you want to use by clicking the corresponding button or
by using the Draw menu. Combine the solid objects and the set algebra to build the
desired CSG model.

3 Save the geometry to a model file. If you want to continue working using the same
geometry at your next Partial Differential Equation Toolbox session, simply type the
name of the model file at the MATLAB prompt. The PDE app then starts with the
model file's solid geometry loaded. If you save the PDE problem at a later stage of
the solution process, the model file also contains commands to recreate the boundary
conditions, the PDE coefficients, and the mesh.

4 Move to the next step in the PDE solving process by clicking the ∂Ω button. The
outer boundaries of the decomposed geometry are displayed with the default
boundary condition indicated. If the outer boundaries do not match the geometry
of your problem, reenter the draw mode. You can then correct your CSG model by
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adding, removing or altering any of the solid objects, or change the set formula used
to evaluate the CSG model.

Note: The set formula can only be edited while you are in the draw mode.

If the drawing process resulted in any unwanted subdomain borders, remove them
by using the Remove Subdomain Border or Remove All Subdomain Borders
option from the Boundary menu.

You can now define your problem's boundary conditions by selecting the boundary
to change and open a dialog box by double-clicking the boundary or by using the
Specify Boundary Conditions option from the Boundary menu.

5 Initialize the triangular mesh. Click the Δ button or use the corresponding Mesh
menu option Initialize Mesh. Normally, the mesh algorithm's default parameters
generate a good mesh. If necessary, they can be accessed using the Parameters
menu item.

6 If you need a finer mesh, the mesh can be refined by clicking the Refine button.
Clicking the button several times causes a successive refinement of the mesh. The
cost of a very fine mesh is a significant increase in the number of points where
the PDE is solved and, consequently, a significant increase in the time required
to compute the solution. Do not refine unless it is required to achieve the desired
accuracy. For each refinement, the number of triangles increases by a factor of four.
A better way to increase the accuracy of the solution to elliptic PDE problems is to
use the adaptive solver, which refines the mesh in the areas where the estimated
error of the solution is largest. See the adaptmesh reference page for an example of
how the adaptive solver can solve a Laplace equation with an accuracy that requires
more than 10 times as many triangles when regular refinement is used.

7 Specify the PDE from the PDE Specification dialog box. You can access that dialog
box using the PDE button or the PDE Specification menu item from the PDE
menu.

Note: This step can be performed at any time prior to solving the PDE since it
is independent of the CSG model and the boundaries. If the PDE coefficients are
material dependent, they are entered in the PDE mode by double-clicking the
different subdomains.
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8 Solve the PDE by clicking the = button or by selecting Solve PDE from the Solve
menu. If you do not want an automatic plot of the solution, or if you want to change
the way the solution is presented, you can do that from the Plot Selection dialog
box prior to solving the PDE. You open the Plot Selection dialog box by clicking the
button with the 3-D solution plot icon or by selecting the Parameters menu item
from the Plot menu.

9 Now, from here you can choose one of several alternatives:

• Export the solution and/or the mesh to the MATLAB main workspace for further
analysis.

• Visualize other properties of the solution.
• Change the PDE and recompute the solution.
• Change the mesh and recompute the solution. If you select Initialize Mesh, the

mesh is initialized; if you select Refine Mesh, the current mesh is refined. From
the Mesh menu, you can also jiggle the mesh and undo previous mesh changes.

• Change the boundary conditions. To return to the mode where you can select
boundaries, use the ∂Ω button or the Boundary Mode option from the
Boundary menu.

• Change the CSG model. You can reenter the draw mode by selecting Draw Mode
from the Draw menu or by clicking one of the Draw Mode icons to add another
solid object. Back in the draw mode, you are able to add, change, or delete solid
objects and also to alter the set formula.

In addition to the recommended path of actions, there are a number of shortcuts, which
allow you to skip over one or more steps. In general, the PDE app adds the necessary
steps automatically.

• If you have not yet defined a CSG model, and leave the draw mode with an empty
model, the PDE app creates an L-shaped geometry with the default boundary
condition and then proceeds to the action called for, performing all the steps
necessary.

• If you are in draw mode and click the Δ button to initialize the mesh, the PDE app
first decomposes the geometry using the current set formula and assigns the default
boundary condition to the outer boundaries. After that, an initial mesh is created.

• If you click the refine button to refine the mesh before the mesh has been initialized,
the PDE app first initializes the mesh (and decomposes the geometry, if you were still
in the draw mode).
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• If you click the = button to solve the PDE and you have not yet created a mesh, the
PDE app initializes a mesh before solving the PDE.

• If you select a plot type and choose to plot the solution, the PDE app checks to see if
there is a solution to the current PDE available. If not, the PDE app first solves the
current PDE. The solution is then displayed using the selected plot options.

• If you have not defined your PDE, the PDE app solves the default PDE, which is
Poisson's equation:
–Δu = 10.

(This corresponds to the generic elliptic PDE with c = 1, a = 0, and f = 10.) For the
different application modes, different default PDE settings apply.
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Structural Mechanics — Plane Stress

In structural mechanics, the equations relating stress and strain arise from the balance
of forces in the material medium. Plane stress is a condition that prevails in a flat plate
in the x-y plane, loaded only in its own plane and without z-direction restraint.

The stress-strain relation can then be written, assuming isotropic and isothermal
conditions
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where σx and σy are the normal stresses in the x and y directions, and τxy is the shear
stress. The material properties are expressed as a combination of E, the elastic modulus
or Young's modulus, and ν, Poisson's ratio.

The deformation of the material is described by the displacements in the x and y
directions, u and v, from which the strains are defined as
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where Kx and Ky are volume forces (body forces).
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Combining the preceding relations, we arrive at the displacement equations, which can
be written

-— ƒ —( ) =· ,c u k

where c is a rank four tensor (see “c Coefficient for Systems” on page 2-95), which can be
written as four 2-by-2 matrices c11, c12, c21, and c22:
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are volume forces.

This is an elliptic PDE of system type (u is two-dimensional), but you need only to set the
application mode to Structural Mechanics, Plane Stress and then enter the material-
dependent parameters E and ν and the volume forces k into the PDE Specification dialog
box.
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In this mode, you can also solve the eigenvalue problem, which is described by
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ρ, the density, can also be entered using the PDE Specification dialog box.

In the Plot Selection dialog box, the x- and y-displacements, u and v, and the absolute
value of the displacement vector (u, v) can be visualized using color, contour lines, or z-
height, and the displacement vector field (u, v) can be plotted using arrows or a deformed
mesh. In addition, for visualization using color, contour lines, or height, you can choose
from 15 scalar tensor expressions:
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=
∂

∂

•
v

v

y
y

=
∂

∂

• exx, the x-direction strain (εx)
• eyy, the y-direction strain (εy)
• exy, the shear strain (γxy)
• sxx, the x-direction stress (σx)
• syy, the y-direction stress (σy)
• sxy, the shear stress (τxy)
• e1, the first principal strain (ε1)
• e2, the second principal strain (ε2)
• s1, the first principal stress (σ1)
• s2, the second principal stress (σ2)
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• von Mises, the von Mises effective stress

s s s s
1

2

2

2

1 2
+ - .

For a more detailed discussion on the theory of stress-strain relations and applications
of FEM to problems in structural mechanics, see Cook, Robert D., David S. Malkus, and
Michael E. Plesha, Concepts and Applications of Finite Element Analysis, 3rd edition,
John Wiley & Sons, New York, 1989.

Example

Consider a steel plate that is clamped along a right-angle inset at the lower-left corner,
and pulled along a rounded cut at the upper-right corner. All other sides are free.

The steel plate has the following properties: Dimension: 1-by-1 meters; thickness 1 mm;
inset is 1/3-by-1/3 meters. The rounded cut runs from (2/3, 1) to (1, 2/3). Young's modulus:
196 · 103 (MN/m2), Poisson's ratio: 0.31.

The curved boundary is subjected to an outward normal load of 500 N/m. We need to
specify a surface traction; we therefore divide by the thickness 1 mm, thus the surface
tractions should be set to 0.5 MN/m2. We will use the force unit MN in this example.

We want to compute a number of interesting quantities, such as the x- and y-direction
strains and stresses, the shear stress, and the von Mises effective stress.

Using the PDE App

Using the PDE app, set the application mode to Structural Mechanics, Plane Stress.

The CSG model can be made very quickly by drawing a polygon with corners in x = [0
2/3 1 1 1/3 1/3 0] and y = [1 1 2/3 0 0 1/3 1/3] and a circle with center in x
= 2/3, y = 2/3 and radius 1/3.

The polygon is normally labeled P1 and the circle C1, and the CSG model of the steel
plate is simply P1+C1.

Next, select Boundary Mode to specify the boundary conditions. First, remove all
subdomain borders by selecting Remove All Subdomain Borders from the Boundary
menu. The two boundaries at the inset in the lower left are clamped, i.e., Dirichlet
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conditions with zero displacements. The rounded cut is subject to a Neumann condition
with q = 0 and g1 = 0.5*nx, g2 = 0.5*ny. The remaining boundaries are free (no
normal stress), that is, a Neumann condition with q = 0 and g = 0.

The next step is to open the PDE Specification dialog box and enter the PDE parameters.

The E and ν (nu) parameters are Young's modulus and Poisson's ratio, respectively.
There are no volume forces, so Kx and Ky are zero. ρ (rho) is not used in this mode. The
material is homogeneous, so the same E and [[ν apply to the whole 2-D domain.

Initialize the mesh by clicking the Δ button. If you want, you can refine the mesh by
clicking the Refine button.

The problem can now be solved by clicking the = button.

A number of different strain and stress properties can be visualized, such as the
displacements u and v, the x- and y-direction strains and stresses, the shear stress, the
von Mises effective stress, and the principal stresses and strains. All these properties can
be selected from pop-up menus in the Plot Selection dialog box. A combination of scalar
and vector properties can be plotted simultaneously by selecting different properties to be
represented by color, height, vector field arrows, and displacements in a 3-D plot.

Select to plot the von Mises effective stress using color and the displacement vector field
(u,v) using a deformed mesh. Select the Color and Deformed mesh plot types. To plot
the von Mises effective stress, select von Mises from the pop-up menu in the Color row.



3 Solving PDEs

3-12

In areas where the gradient of the solution (the stress) is large, you need to refine the
mesh to increase the accuracy of the solution. Select Parameters from the Solve menu
and select the Adaptive mode check box. You can use the default options for adaptation,
which are the Worst triangles triangle selection method with the Worst triangle
fraction set to 0.5. Now solve the plane stress problem again. Select the Show Mesh
option in the Plot Selection dialog box to see how the mesh is refined in areas where the
stress is large.

Visualization of the von Mises Effective Stress and the Displacements Using Deformed Mesh
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Structural Mechanics — Plane Strain

A deformation state where there are no displacements in the z-direction, and the
displacements in the x- and y-directions are functions of x and y but not z is called plane
strain. You can solve plane strain problems with Partial Differential Equation Toolbox
software by setting the application mode to Structural Mechanics, Plane Strain. The
stress-strain relation is only slightly different from the plane stress case, and the same
set of material parameters is used. The application interfaces are identical for the two
structural mechanics modes.

The places where the plane strain equations differ from the plane stress equations are:

• The µ parameter in the c tensor is defined as

m
n

n
=

-
2

1 2
G .

• The von Mises effective stress is computed as

s s n n s s n n1
2

2
2 2

1 2
2

1 2 2 1+( ) - +( ) + - -( ).

Plane strain problems are less common than plane stress problems. An example is a slice
of an underground tunnel that lies along the z-axis. It deforms in essentially plane strain
conditions.
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Clamped, Square Isotropic Plate With a Uniform Pressure Load

This example shows how to calculate the deflection of a structural plate acted on by a
pressure loading using the Partial Differential Equation Toolbox™.

PDE and Boundary Conditions For A Thin Plate

The partial differential equation for a thin, isotropic plate with a pressure loading is

where  is the bending stiffness of the plate given by

and  is the modulus of elasticity,  is Poisson's ratio, and  is the plate thickness. The
transverse deflection of the plate is  and  is the pressure load.

The boundary conditions for the clamped boundaries are  and  where  is
the derivative of  in a direction normal to the boundary.

The Partial Differential Equation Toolbox™ cannot directly solve the fourth order plate
equation shown above but this can be converted to the following two second order partial
differential equations.

where  is a new dependent variable. However, it is not obvious how to specify boundary
conditions for this second order system. We cannot directly specify boundary conditions
for both  and . Instead, we directly prescribe  to be zero and use the following
technique to define  in such a way to insure that  also equals zero on the boundary.
Stiff "springs" that apply a transverse shear force to the plate edge are distributed along
the boundary. The shear force along the boundary due to these springs can be written
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 where  is the normal to the boundary and  is the stiffness of the
springs. The value of  must be large enough that  is approximately zero at all points on
the boundary but not so large that numerical errors result because the stiffness matrix is
ill-conditioned. This expression is a generalized Neumann boundary condition supported
by Partial Differential Equation Toolbox™

In the Partial Differential Equation Toolbox™ definition for an elliptic system, the 
and  dependent variables are u(1) and u(2). The two second order partial differential
equations can be rewritten as

which is the form supported by the toolbox. The input corresponding to this formulation
is shown in the sections below.

Create the PDE Model

% Create a pde entity for a PDE with two dependent variables

numberOfPDE = 2;

pdem = createpde(numberOfPDE);

Problem Parameters

E = 1.0e6; % modulus of elasticity

nu = .3; % Poisson's ratio

thick = .1; % plate thickness

len = 10.0; % side length for the square plate

hmax = len/20; % mesh size parameter

D = E*thick^3/(12*(1 - nu^2));

pres = 2; % external pressure

Geometry and Mesh

For a single square, the geometry and mesh are easily defined as shown below.

gdm = [3 4 0 len len 0 0 0 len len]';

g = decsg(gdm, 'S1', ('S1')');

% Create a geometry entity

geometryFromEdges(pdem,g);
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% Plot the geometry and display the edge labels for use in the boundary

% condition definition.

figure;

pdegplot(pdem, 'edgeLabels', 'on');

axis equal

title 'Geometry With Edge Labels Displayed';

generateMesh(pdem, 'Hmax', hmax);

Boundary Conditions

k = 1e7; % spring stiffness

% Define distributed springs on all four edges
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bOuter = applyBoundaryCondition(pdem,'Edge',(1:4), 'g', [0 0], 'q', [0 0; k 0]);

Coefficient Definition

The documentation for assempde shows the required formats for the a and c matrices
in the section titled "PDE Coefficients for System Case". The most convenient form
for c in this example is  from the table where  is the number of differential
equations. In this example . The  tensor, in the form of an  matrix of 
submatrices is shown below.

The six-row by one-column c matrix is defined below. The entries in the full  a
matrix and the  f vector follow directly from the definition of the two-equation
system shown above.

c = [1 0 1 D 0 D]';

a = [0 0 1 0]';

f = [0 pres]';

Finite Element and Analytical Solutions

The solution is calculated using the assempde function and the transverse deflection
is plotted using the pdeplot function. For comparison, the transverse deflection at the
plate center is also calculated using an analytical solution to this problem.

u = assempde(pdem,c,a,f);

numNodes = size(pdem.Mesh.Nodes,2);

figure

pdeplot(pdem, 'xydata', u(1:numNodes), 'contour', 'on');

title 'Transverse Deflection'

numNodes = size(pdem.Mesh.Nodes,2);

fprintf('Transverse deflection at plate center(PDE Toolbox) = %12.4e\n', min(u(1:numNodes,1)));

% compute analytical solution

wMax = -.0138*pres*len^4/(E*thick^3);

fprintf('Transverse deflection at plate center(analytical) = %12.4e\n', wMax);

Transverse deflection at plate center(PDE Toolbox) =  -2.7563e-01

Transverse deflection at plate center(analytical) =  -2.7600e-01
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Deflection of a Piezoelectric Actuator

This example shows how to solve a coupled elasticity-electrostatics problem using the
Partial Differential Equation Toolbox™. Piezoelectric materials deform when a voltage is
applied. Conversely, a voltage is produced when a piezoelectric material is deformed.

Analysis of a piezoelectric part requires the solution of a set of coupled partial differential
equations with deflections and electrical potential as dependent variables. One of
the main objectives of this example is to show how such a system of coupled partial
differential equations can be solved using PDE Toolbox.

PDE For a Piezoelectric Solid

The elastic behavior of the solid is described by the equilibrium equations

where  is the stress tensor and  is the body force vector. The electrostatic behavior of
the solid is described by Gauss' Law

where  is the electric displacement and  is the distributed, free charge. These two PDE
systems can be combined into the following single system

In 2D,  has the components  and  and  has the components  and
.

The constitutive equations for the material define the stress tensor and electric
displacement vector in terms of the strain tensor and electric field. For a 2D, orthotropic,
piezoelectric material under plane stress conditions these are commonly written as
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where  are the elastic coefficients,  are the electrical permittivities, and  are
the piezoelectric stress coefficients. The piezoelectric stress coefficients are written to
conform to conventional notation in piezoelectric materials where the z-direction (3-
direction) is aligned with the "poled" direction of the material. For the 2D analysis, we
want the poled direction to be aligned with the y-axis.

Finally, the strain vector can be written in terms of the x-displacement, , and y-
displacement,  as

and the electric field written in terms of the electrical potential, , as

See reference 2, for example, for a more complete description of the piezoelectric
equations.

The strain-displacement equations and electric field equations above can be substituted
into the constitutive equations to yield a system of equations for the stresses and
electrical displacements in terms of displacement and electrical potential derivatives. If
the resulting equations are substituted into the PDE system equations, we have a system
of equations that involve the divergence of the displacement and electrical potential
derivatives. Arranging these equations to match the form required by PDE Toolbox will
be the topic for the next section.

Converting the Equations To PDE Toolbox Form

The PDE Toolbox requires a system of elliptic equations to be expressed in the form

or in tensor form
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where summation is implied by repeated indices. For the 2D piezoelectric system
described above, the PDE Toolbox system vector  is

This is an  system. The gradient of  is given by

The documentation for the function assempde shows that it is convenient to view the
tensor  as an  matrix of  submatrices. The most convenient form for the
 input argument for this symmetric,  system has 21 rows in  and is described in

detail in the PDE Toolbox documentation. It is repeated here for convenience.

For the purposes of mapping terms from constitutive equations to the form required by
PDE Toolbox it is useful to write the  tensor and solution gradient in the following form
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From this equation the traditional constitutive coefficients can be mapped to the form
required for the PDE Toolbox  matrix. Note the minus sign in the equations for electric
field. This minus must be incorporated into the  matrix to match the PDE Toolbox
convention. This is shown explicitly below.

Piezoelectric Bimorph Actuator Model

Now that we have defined the equations for a 2D piezoelectric material, we are ready to
apply these to a specific model. The model is a two-layer cantilever beam that has been
extensively studied (e.g. refs 1 and 2). It is defined as a "bimorph" because although both
layers are made of the same Polyvinylidene Fluoride (PVDF) material, in the top layer
the polarization direction points down (minus y direction) and in the bottom layer, it
points up. A schematic of the cantilever beam is shown in the figure below.
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This figure is not to scale; the actual thickness/length ratio is 100 so the beam is
very slender. When a voltage is applied between the lower and upper surfaces of the
beam, it deflects in the y-direction; one layer shortens and the other layer lengthens.
Devices of this type can be designed to provide the required motion or force for different
applications.

Create a PDE Model with three dependent variables

numberOfPDE = 3;

pdem = createpde(numberOfPDE);

Geometry and Mesh

The simple two-layer geometry of the beam can be created by defining the sum of two
rectangles.

L = 100e-3; % beam length in meters

H = 1e-3; % overall height of the beam

H2 = H/2; % height of each layer in meters

% The two lines below contain the columns of the

% geometry description matrix (GDM) for the two rectangular layers.

% The GDM  is the first input argument to decsg and describes the



3 Solving PDEs

3-24

% basic geometric entities in the model.

topLayer = [3 4 0 L L 0 0 0 H2 H2];

bottomLayer = [3 4 0 L L 0 -H2 -H2 0 0];

gdm = [topLayer; bottomLayer]';

g = decsg(gdm, 'R1+R2', ['R1'; 'R2']');

% Create a geometry entity and append to the PDE Model

geometryFromEdges(pdem,g);

figure;

pdegplot(pdem, 'edgeLabels', 'on');

title 'Two-layer Piezoelectric Cantilever Beam (with edge labels)'

xlabel 'X-coordinate, meters';

ylabel 'Y-coordinate, meters';

axis([-.1*L, 1.1*L, -4*H2, 4*H2]);

% We need a relatively fine mesh with maximum element size roughly equal H/16

% to accurately model the bending of the beam.

hmax = H/16;

msh = generateMesh(pdem, 'Hmax', hmax, 'MesherVersion', 'R2013a');

Warning: Approximately 51200 triangles will be generated.
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Material Properties

The material in both layers of the beam is Polyvinylidene Fluoride (PVDF), a
thermoplastic polymer with piezoelectric behavior.

E = 2.0e9; % Elastic modulus, N/m^2

NU = 0.29; % Poisson's ratio

G = 0.775e9; % Shear modulus, N/m^2

d31 = 2.2e-11; % Piezoelectric strain coefficients, C/N

d33 = -3.0e-11;

% relative electrical permittivity of the material

relPermittivity = 12; % at constant stress

% electrical permittivity of vacuum

permittivityFreeSpace = 8.854187817620e-12; % F/m
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C11 = E/(1-NU^2);

C12 = NU*C11;

c2d = [C11 C12 0; C12 C11 0; 0 0 G];

pzeD = [0 d31; 0 d33; 0 0];

% The piezoelectric strain coefficients for PVDF are

% given above but the constitutive relations in the

% finite element formulation require the

% piezoelectric stress coefficients. These are calculated on the next

% line (for details see, for example, reference 2).

pzeE = c2d*pzeD;

D_const_stress = [relPermittivity 0; 0 relPermittivity]*permittivityFreeSpace;

% Convert dielectric matrix from constant stress to constant strain

D_const_strain = D_const_stress - pzeD'*pzeE;

% As discussed above, it is convenient to view the 21 coefficients

% required by assempde as a 3 x 3 array of 2 x 2 submatrices.

% The cij matrices defined below are the 2 x 2 submatrices in the upper

% triangle of this array.

c11 = [c2d(1,1) c2d(1,3) c2d(3,3)];

c12 = [c2d(1,3) c2d(1,2); c2d(3,3) c2d(2,3)];

c22 = [c2d(3,3) c2d(2,3) c2d(2,2)];

c13 = [pzeE(1,1) pzeE(1,2); pzeE(3,1) pzeE(3,2)];

c23 = [pzeE(3,1) pzeE(3,2); pzeE(2,1) pzeE(2,2)];

c33 = [D_const_strain(1,1) D_const_strain(2,1) D_const_strain(2,2)];

Function To Return C Coefficients

The c-matrix for this N = 3 system is symmetric. From the documentation for assempde,
we see that the most convenient form for defining the c-matrix has 21 rows defining the
upper triangle of the matrix.

c = @(p, t, u, t0) calcCMatPiezoActuator(p, t, c11, c12, c22, c13, c23, c33);

% The function shown below is called by the PDE Toolbox routines to

% return the required 21 entries in the c-matrix.

type calcCMatPiezoActuator

function c = calcCMatPiezoActuator( p, t, c11, c12, c22, c13, c23, c33 )

%CALCCMATPIEZOACTUATOR C-matrix for piezoelectric actuator example

%   c = CALCCMATPIEZOACTUATOR( p, t, c11, c12, c22, c13, c23, c33 )

%   returns the 'c' coefficient matrix for the piezoelectric actuator

%   example given the point and element matrices along with the

%   constitutive submatrices (cij) for the PVDF material.

% Copyright 2012 The MathWorks, Inc.
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numElems = size(t,2);

c=zeros(21,numElems);

%

% Although the material in both layers is PVDF, in the top layer

% the polarization direction points down (minus y direction) and in the

% bottom layer, it points up. That is, the top layer has d-coefficients

% that are the negative of those in the bottom layer.

%

% The code below examines the y-location of the centroid of each

% triangular element and assigns the correct material properties to

% element depending on whether it is in the top or bottom layer.

%

ctop = [c11(:); c12(:); c22(:); -c13(:); -c23(:); -c33(:)];

cbot = [c11(:); c12(:); c22(:);  c13(:);  c23(:); -c33(:)];

% calculate y-coordinate of triangle centers

yCenter=(p(2,t(1,:)) + p(2,t(2,:)) + p(2,t(3,:)))/3;

for i=1:numElems

  if(yCenter(i) < 0)

    c(:,i) = cbot;

  else

    c(:,i) = ctop;

  end

end

end

Boundary Condition Definition

For this example, the top geometry edge (edge 1) has the voltage prescribed as 100 volts.
The bottom geometry edge (edge 2) has the voltage prescribed as 0 volts (i.e. grounded).
The left geometry edge (edges 6 and 7) have the u and v displacements equal zero (i.e.
clamped). The stress and charge are zero on the right geometry edge (i.e. q = 0).

V = 100;

% Set the voltage (solution component 3) on the top edge to V.

voltTop = applyBoundaryCondition(pdem,'Edge',1, 'u', V, 'EquationIndex', 3);

% Set the voltage (solution component 3) on the bottom edge to zero.

voltBot = applyBoundaryCondition(pdem,'Edge',2, 'u', 0, 'EquationIndex', 3);

% Set the x and y displacements (solution components 1 and 2)

% on the left end (geometry edges 6 and 7) to zero.

clampLeft = applyBoundaryCondition(pdem,'Edge',6:7, 'u', [0 0], 'EquationIndex', 1:2);

Finite Element Solution

a = 0;
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f = [0 0 0]';

u = assempde(pdem, c, a, f);

%

% For display and plotting purposes, it is convenient to reshape the

% solution vector as three columns containing the x-displacement,

% y-displacement, and electrical potential, respectively.

%

uu = reshape(u, [], numberOfPDE);

feTipDeflection = uu(1,2);

fprintf('Finite element tip deflection is: %12.4e\n', feTipDeflection);

varsToPlot = char('X-Deflection, meters', 'Y-Deflection, meters', ...

  'Electrical Potential, Volts');

for i = 1:size(varsToPlot,1)

  figure;

  pdeplot(pdem, 'xydata', uu(:,i), 'contour', 'on');

  title(varsToPlot(i,:));

  % scale the axes to make it easier to view the contours

  axis([0, L, -4*H2, 4*H2]);

  xlabel 'X-Coordinate, meters'

  ylabel 'Y-Coordinate, meters'

end

Finite element tip deflection is:  -3.2772e-05
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Analytical Solution

A simple, approximate, analytical solution was obtained for this problem in reference 1.

tipDeflection = -3*d31*V*L^2/(8*H2^2);

fprintf('Analytical tip deflection is: %12.4e\n', tipDeflection);

Analytical tip deflection is:  -3.3000e-05

Summary

The color contour plots of x-deflection and y-deflection show the standard behavior of
the classical cantilever beam solution. The linear distribution of voltage through the
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thickness of the beam is as expected. There is good agreement between the PDE Toolbox
finite element solution and the analytical solution from reference 1.

Although this example shows a very specific coupled elasticity-electrostatic model, the
general approach here can be used for many other systems of coupled PDEs. The key to
applying PDE Toolbox to these types of coupled systems is the systematic, multi-step
coefficient mapping procedure described above.
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Electrostatics

Applications involving electrostatics include high voltage apparatus, electronic
devices, and capacitors. The “statics” implies that the time rate of change is slow, and
that wavelengths are very large compared to the size of the domain of interest. In
electrostatics, the electrostatic scalar potential V is related to the electric field E by E = –
∇V and, using one of Maxwell's equations, ∇ · D = ρ and the relationship D = εE, we
arrive at the Poisson equation
–∇ · (ε∇V) = ρ,

where ε is the coefficient of dielectricity and ρ is the space charge density.

Note ε should really be written as ε ε0, where ε0 is the coefficient of dielectricity or
permittivity of vacuum (8.854 · 10-12 farad/meter) and ε is the relative coefficient of
dielectricity that varies among different dielectrics (1.00059 in air, 2.24 in transformer
oil, etc.).

Using the Partial Differential Equation Toolbox electrostatics application mode, you can
solve electrostatic problems modeled by the preceding equation.

The PDE Specification dialog box contains entries for ε and ρ.

The boundary conditions for electrostatic problems can be of Dirichlet or Neumann type.
For Dirichlet conditions, the electrostatic potential V is specified on the boundary. For
Neumann conditions, the surface charge  n · (ε∇V ) is specified on the boundary.

For visualization of the solution to an electrostatic problem, the plot selections include
the electrostatic potential V, the electric field E, and the electric displacement field D.

For a more in-depth discussion of problems in electrostatics, see Popovic, Branko D.,
Introductory Engineering Electromagnetics, Addison-Wesley, Reading, MA, 1971.

Example

Let us consider the problem of determining the electrostatic potential in an air-filled
quadratic “frame,” bounded by a square with side length of 0.2 in the center and by outer
limits with side length of 0.5. At the inner boundary, the electrostatic potential is 1000V.
At the outer boundary, the electrostatic potential is 0V. There is no charge in the domain.
This leads to the problem of solving the Laplace equation
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ΔV = 0

with the Dirichlet boundary conditions V = 1000 at the inner boundary, and V = 0 at the
outer boundary.

Using the PDE App

After setting the application mode to Electrostatics, the 2-D area is most easily drawn
by first drawing a square with sides of length 0.2 (use the Snap option and adjust the
grid spacing if necessary). Then draw another square with sides of length 0.5 using
the same center position. The 2-D domain is then simply SQ2-SQ1, if the first square
is named SQ1 and the second square is named SQ2. Enter the expression into the Set
formula edit box, and proceed to define the boundary conditions. Use Shift+click to
select all the inner boundaries. Then double-click an inner boundary and enter 1000 as
the Dirichlet boundary condition for the inner boundaries.

Next, open the PDE Specification dialog box, and enter 0 into the space charge density
(rho) edit field. The coefficient of dielectricity can be left at 1, since it does not affect the
result as long as it is constant.

Initialize the mesh, and click the = button to solve the equation. Using the adaptive
mode, you can improve the accuracy of the solution by refining the mesh close to the
reentrant corners where the gradients are steep. For example, use the triangle selection
method picking the worst triangles and set the maximum number of triangles to 500.
Add one uniform mesh refinement by clicking the Refine button once. Finally turn
adaptive mode off, and click the = button once more.

To look at the equipotential lines, select a contour plot from the Plot Selection dialog box.
To display equipotential lines at every 100th volt, enter 0:100:1000 into the Contour
plot levels edit box.
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Equipotential Lines in Air-Filled Frame
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3-D Linear Elasticity Equations in Toolbox Form
In this section...

“How to Express Coefficients” on page 3-36
“Summary of the Equations of Linear Elasticity” on page 3-36
“Conversion to Toolbox Form” on page 3-37

How to Express Coefficients

The stiffness matrix of linear elastic isotropic material contains two parameters:

• E, the elastic modulus
• ν, Poisson’s ratio

To include these parameters in a 3-D problem, you can use the elasticityC3D(E,nu)
function (included in your software) as the c coefficient. This function uses the linearized,
small-displacement assumption for an isotropic material. For examples that use this
function, see ALAN.

The remainder of this section derives the c coefficient in elasticityC3D(E,nu) from
the equations of linear elasticity.

Summary of the Equations of Linear Elasticity

Define the following quantities.

s

e

=

=

=

=

stress

body force

strain

displacement

f

u

The equilibrium equation is

-— =· .s f

The linearized, small-displacement strain-displacement relationship is

e = — +—( )1

2
u u

T
.
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The balance of angular momentum states that stress is symmetric:

s sij ji= .

The Voigt notation for the constitutive equation of the linear isotropic model is
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In expanded form, using all the entries in σ and ε taking symmetry into account,
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In the preceding diagram, • means the entry is symmetric.

Conversion to Toolbox Form

The toolbox form for the equation is

-— ƒ —( ) =· .c u f

But the equations in the summary do not have ∇u alone, it appears together with its
transpose:
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e = — +—( )1

2
u u

T
.

It is a straightforward exercise to convert this equation for strain ε to ∇u. In column
vector form,
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Therefore, you can write the strain-displacement equation as
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where A stands for the displayed matrix. So rewriting Equation 3-1, and recalling that •
means an entry is symmetric,
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Make the definitions

G
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and the equation becomes
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To express the coefficient c for a toolbox solver, notice that it is a symmetric
matrix. With N = 3 equations, you can write this in the form “3N(3N+1)/2-Element
Column Vector c, 3-D Systems” on page 2-111. This is the form of the c argument in
elasticityC3D(E,nu).
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Magnetostatics
Magnets, electric motors, and transformers are areas where problems involving
magnetostatics can be found. The “statics” implies that the time rate of change is slow, so
we start with Maxwell's equations for steady cases,

— ¥ =H J

— ◊ =B 0

and the relationship

B H= m

where B is the magnetic flux density, H is the magnetic field intensity, J is the current
density, and µ is the material's magnetic permeability.

Since — ◊ =B 0 , there exists a magnetic vector potential A such that

B A= — ¥

and

— ¥ — ¥Ê

Ë
Á

ˆ

¯
˜ =

1

m
A J

The plane case assumes that the current flows are parallel to the z-axis, so only the z
component of A is present,

A J= =( , , ), ( , , )0 0 0 0A J

You can impose the common gauge assumption (Lorenz gauge or Coulomb gauge, see
Wikipedia® [2])

— =· ,A 0

and then the equation for A in terms of J can be simplified to the scalar elliptic PDE

-— —Ê

Ë
Á

ˆ

¯
˜ =· ,

1

m
A J
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where J = J(x,y).

For the 2-D case, we can compute the magnetic flux density B as

B =
∂
∂

-
∂
∂

Ê

Ë
Á

ˆ

¯
˜

A

y

A

x
, ,0

and the magnetic field H, in turn, is given by

H B=
1

m

The interface condition across subdomain borders between regions of different material
properties is that H x n be continuous. This implies the continuity of

1

m

∂

∂

A

n

and does not require special treatment since we are using the variational formulation of
the PDE problem.

In ferromagnetic materials, µ is usually dependent on the field strength |B| = |∇A|, so
the nonlinear solver is needed.

The Dirichlet boundary condition specifies the value of the magnetostatic potential A on
the boundary. The Neumann condition specifies the value of the normal component of

n ◊ Ê

Ë
Á

ˆ

¯
˜—

1

m
A

on the boundary. This is equivalent to specifying the tangential value of the magnetic
field H on the boundary.

Visualization of the magnetostatic potential A, the magnetic field H, and the magnetic
flux density B is available. B and H can be plotted as vector fields.

References

[1] Popovic, Branko D., Introductory Engineering Electromagnetics, Addison-Wesley,
Reading, MA, 1971.

[2] Wikipedia entries on Gauge fixing.

http://en.wikipedia.org/wiki/Gauge_fixing
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Example

As an example of a problem in magnetostatics, consider determining the static magnetic
field due to the stator windings in a two-pole electric motor. The motor is considered to be
long, and when end effects are neglected, a 2-D computational model suffices.

The domain consists of three regions:

• Two ferromagnetic pieces, the stator and the rotor
• The air gap between the stator and the rotor
• The armature coil carrying the DC current

The magnetic permeability µ is 1 in the air and in the coil. In the stator and the rotor, µ
is defined by

m
m

m=
+ —

+max
min

.

1
2

c A

µmax = 5000, µmin = 200, and c = 0.05 are values that could represent transformer steel.

The current density J is 0 everywhere except in the coil, where it is 1.

The geometry of the problem makes the magnetic vector potential A symmetric with
respect to y and antisymmetric with respect to x, so you can limit the domain to x ≥ 0,y ≥
0 with the Neumann boundary condition

n ◊Ê

Ë
Á

ˆ

¯
˜ =—

1
0

m
A

on the x-axis and the Dirichlet boundary condition A = 0 on the y-axis. The field outside
the motor is neglected leading to the Dirichlet boundary condition A = 0 on the exterior
boundary.

Using the PDE App

The geometry is complex, involving five circular arcs and two rectangles. Using the PDE
app, set the x-axis limits to [-1.5 1.5] and the y-axis limits to [-1 1]. Set the application
mode to Magnetostatics, and use a grid spacing of 0.1. The model is a union of circles
and rectangles; the reduction to the first quadrant is achieved by intersection with a
square. Using the “snap-to-grid” feature, you can draw the geometry using the mouse, or
you can draw it by entering the following commands:
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pdecirc(0,0,1,'C1') 

pdecirc(0,0,0.8,'C2') 

pdecirc(0,0,0.6,'C3')

pdecirc(0,0,0.5,'C4') 

pdecirc(0,0,0.4,'C5') 

pderect([-0.2 0.2 0.2 0.9],'R1') 

pderect([-0.1 0.1 0.2 0.9],'R2') 

pderect([0 1 0 1],'SQ1') 

You should get a CSG model similar to the one in the following plot.

Enter the following set formula to reduce the model to the first quadrant:
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(C1+C2+C3+C4+C5+R1+R2)*SQ1

In boundary mode you need to remove a number of subdomain borders. Using
Shift+click, select borders and remove them using the Remove Subdomain Border
option from the Boundary menu until the geometry consists of four subdomains: the
stator, the rotor, the coil, and the air gap. In the following plot, the stator is subdomain
1, the rotor is subdomain 2, the coil is subdomain 3, and the air gap is subdomain 4. The
numbering of your subdomains may be different.

Before moving to the PDE mode, select the boundaries along the x-axis and set the
boundary condition to a Neumann condition with g = 0 and q = 0. In the PDE mode, turn
on the labels by selecting the Show Subdomain Labels option from the PDE menu.
Double-click each subdomain to define the PDE parameters:

• In the coil both µ and J are 1, so the default values do not need to be changed.
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• In the stator and the rotor µ is nonlinear and defined by the preceding equation.
Enter µ as

5000./(1+0.05*(ux.^2+uy.^2))+200 

ux.^2+uy.^2 is equal to |∇A |2. J is 0 (no current).
• In the air gap µ is 1, and J is 0.

Initialize the mesh, and continue by opening the Solve Parameters dialog box by
selecting Parameters from the Solve menu. Since this is a nonlinear problem, the
nonlinear solver must be invoked by checking the Use nonlinear solver. If you want,
you can adjust the tolerance parameter. The adaptive solver can be used together with
the nonlinear solver. Solve the PDE and plot the magnetic flux density B using arrows
and the equipotential lines of the magnetostatic potential A using a contour plot. The plot
clearly shows, as expected, that the magnetic flux is parallel to the equipotential lines of
the magnetostatic potential.
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Equipotential Lines and Magnetic Flux in a Two-Pole Motor
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AC Power Electromagnetics

AC power electromagnetics problems are found when studying motors, transformers and
conductors carrying alternating currents.

Let us start by considering a homogeneous dielectric, with coefficient of dielectricity ε
and magnetic permeability µ, with no charges at any point. The fields must satisfy a
special set of the general Maxwell's equations:

— ¥ = -
∂

∂

— ¥ =
∂

∂
+

E
H

H
E

J

m

e

t

t

.

For a more detailed discussion on Maxwell's equations, see Popovic, Branko D.,
Introductory Engineering Electromagnetics, Addison-Wesley, Reading, MA, 1971.

In the absence of current, we can eliminate H from the first set and E from the second set
and see that both fields satisfy wave equations with wave speed em :
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We move on to studying a charge-free homogeneous dielectric, with coefficient of
dielectrics ε, magnetic permeability µ, and conductivity σ. The current density then is

J E= s

and the waves are damped by the Ohmic resistance,

DE
E E
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∂
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∂
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t t

2

2
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and similarly for H.

The case of time harmonic fields is treated by using the complex form, replacing E by

E
c
e j tw

The plane case of this Partial Differential Equation Toolbox mode has

E Jc c
j tE Je= ( ) = ( )0 0 0 0, , , , , 
w , and the magnetic field

H H H= ( ) =
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—¥x y c
j

E, , .0
1

ms

The scalar equation for Ec becomes
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ˆ
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1
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m
ws w eE j Ec c

This is the equation used by Partial Differential Equation Toolbox software in the
AC power electromagnetics application mode. It is a complex Helmholtz's equation,
describing the propagation of plane electromagnetic waves in imperfect dielectrics and
good conductors (σ » ωε). A complex permittivity εc can be defined as εc = ε-jσ/ω. The
conditions at material interfaces with abrupt changes of ε and µ are the natural ones for
the variational formulation and need no special attention.

The PDE parameters that have to be entered into the PDE Specification dialog box
are the angular frequency ω, the magnetic permeability µ, the conductivity σ, and the
coefficient of dielectricity ε.

The boundary conditions associated with this mode are a Dirichlet boundary condition,
specifying the value of the electric field Ec on the boundary, and a Neumann condition,
specifying the normal derivative of Ec. This is equivalent to specifying the tangential
component of the magnetic field H:

H
j

Et c= Ê

Ë
Á

ˆ

¯
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w m
n · .
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Interesting properties that can be computed from the solution—the electric field E—are
the current density J = σE and the magnetic flux density

B E= — ¥
j

w
.

The electric field E, the current density J, the magnetic field H and the magnetic flux
density B are available for plots. Additionally, the resistive heating rate

Q Ec=
2

/ s

is also available. The magnetic field and the magnetic flux density can be plotted as
vector fields using arrows.

Example

The example shows the skin effect when AC current is carried by a wire with circular
cross section. The conductivity of copper is 57 · 106, and the permeability is 1, i.e.,
µ = 4π10–7. At the line frequency (50 Hz) the ω2ε-term is negligible.

Due to the induction, the current density in the interior of the conductor is smaller than
at the outer surface where it is set to JS = 1, a Dirichlet condition for the electric field,
Ec = 1/σ. For this case an analytical solution is available,

J J
J kr

J kR
S=

( )

( )
0

0

,

where

k j= wms .

R is the radius of the wire, r is the distance from the center line, and J0(x) is the first
Bessel function of zeroth order.
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Using the PDE App

Start the PDE app and set the application mode to AC Power Electromagnetics. Draw
a circle with radius 0.1 to represent a cross section of the conductor, and proceed to the
boundary mode to define the boundary condition. Use the Select All option to select all
boundaries and enter 1/57E6 into the r edit field in the Boundary Condition dialog box
to define the Dirichlet boundary condition (E = J/σ).

Open the PDE Specification dialog box and enter the PDE parameters. The angular
frequency ω = 2π · 50.

Initialize the mesh and solve the equation. Due to the skin effect, the current density
at the surface of the conductor is much higher than in the conductor's interior. This
is clearly visualized by plotting the current density J as a 3-D plot. To improve the
accuracy of the solution close to the surface, you need to refine the mesh. Open the Solve
Parameters dialog box and select the Adaptive mode check box. Also, set the maximum
numbers of triangles to Inf, the maximum numbers of refinements to 1, and use the
triangle selection method that picks the worst triangles. Recompute the solution several
times. Each time the adaptive solver refines the area with the largest errors. The number
of triangles is printed on the command line. The following mesh is the result of successive
adaptations and contains 1548 triangles.
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The Adaptively Refined Mesh

The solution of the AC power electromagnetics equation is complex. The plots show the
real part of the solution (a warning message is issued), but the solution vector, which
can be exported to the main workspace, is the full complex solution. Also, you can plot
various properties of the complex solution by using the user entry. imag(u) and abs(u)
are two examples of valid user entries.

The skin effect is an AC phenomenon. Decreasing the frequency of the alternating
current results in a decrease of the skin effect. Approaching DC conditions, the current
density is close to uniform (experiment using different angular frequencies).
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The Current Density in an AC Wire
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Conductive Media DC

For electrolysis and computation of resistances of grounding plates, we have a conductive
medium with conductivity σ and a steady current. The current density J is related to the
electric field E through J = σE. Combining the continuity equation ∇ · J = Q, where Q is
a current source, with the definition of the electric potential V yields the elliptic Poisson's
equation
–∇ · (σ∇V) = Q.

The only two PDE parameters are the conductivity σ and the current source Q.

The Dirichlet boundary condition assigns values of the electric potential V to the
boundaries, usually metallic conductors. The Neumann boundary condition requires the
value of the normal component of the current density (n · (σ∇V)) to be known. It is also
possible to specify a generalized Neumann condition defined by n · (σ∇V) + qV = g, where
q can be interpreted as a film conductance for thin plates.

The electric potential V, the electric field E, and the current density J are all available
for plotting. Interesting quantities to visualize are the current lines (the vector field of
J) and the equipotential lines of V. The equipotential lines are orthogonal to the current
lines when σ is isotropic.

Example

Two circular metallic conductors are placed on a plane, thin conductor like a blotting
paper wetted by brine. The equipotentials can be traced by a voltmeter with a simple
probe, and the current lines can be traced by strongly colored ions, such as permanganate
ions.

The physical model for this problem consists of the Laplace equation
–∇ · (σ∇V) = 0

for the electric potential V and the boundary conditions:

• V = 1 on the left circular conductor
• V = –1 on the right circular conductor
• The natural Neumann boundary condition on the outer boundaries

∂

∂
=

V

n
0.
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The conductivity σ = 1 (constant).

1 Open the PDE app by typing

pdetool

at the MATLAB command prompt.
2 Click Options > Application >  Conductive Media DC.
3 Click Options >  Grid Spacing..., deselect the Auto check boxes for X-axis linear

spacing and Y-axis linear spacing, and choose a spacing of 0.3, as pictured.
Ensure the Y-axis goes from –0.9 to 0.9. Click Apply, and then Done.

4 Click Options > Snap
5

Click  and draw the blotting paper as a rectangle with corners in (-1.2,-0.6),
(1.2,-0.6), (1.2,0.6), and (-1.2,0.6).

6
Click  and add two circles with radius 0.3 that represent the circular conductors.
Place them symmetrically with centers in (-0.6,0) and (0.6,0).

7 To express the 2-D domain of the problem, enter

R1-(C1+C2)



3 Solving PDEs

3-56

for the Set formula parameter.
8 To decompose the geometry and enter the boundary mode, click .
9 Hold down Shift and click to select the outer boundaries. Double-click the last

boundary to open the Boundary Condition dialog box.
10 Select Neumann and click OK.

11 Hold down Shift and click to select the left circular conductor boundaries. Double-
click the last boundary to open the Boundary Condition dialog box.

12 Set the parameters as follows and then click OK:

• Condition type = Dirichlet
• h = 1
• r = 1
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13 Hold down Shift and click to select the right circular conductor boundaries. Double-
click the last boundary to open the Boundary Condition dialog box.

14 Set the parameters as follows and then click OK:

• Condition type = Dirichlet
• h = 1
• r = -1

15 Open the PDE Specification dialog box by clicking PDE > PDE Specification.
16 Set the current source, q, parameter to 0.
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17 Initialize the mesh by clicking Mesh > Initialize Mesh.
18 Refine the mesh by clicking Mesh > Refine Mesh twice.
19 Improve the triangle quality by clicking Mesh > Jiggle Mesh.
20

Solve the PDE by clicking .

The resulting potential is zero along the y-axis, which is a vertical line of anti-
symmetry for this problem.
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21 Visualize the current density J  by clicking Plot > Parameters, selecting Contour
and Arrows check box, and clicking Plot.

The current flows, as expected, from the conductor with a positive potential to the
conductor with a negative potential.
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The Current Density Between Two Metallic Conductors
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Heat Transfer
The heat equation is a parabolic PDE:

rC
T

t
k T Q h T T

∂

∂
—◊ —( ) = + -( )-

ext
.

It describes the heat transfer process for plane and axisymmetric cases, and uses the
following parameters:

• Density ρ
• Heat capacity C
• Coefficient of heat conduction k
• Heat source Q
• Convective heat transfer coefficient h
• External temperature Text

The term h(Text – T) is a model of transversal heat transfer from the surroundings, and it
may be useful for modeling heat transfer in thin cooling plates etc.

For the steady state case, the elliptic version of the heat equation,

-—◊ —( ) = + -( )k T Q h T T
ext

is also available.

The boundary conditions can be of Dirichlet type, where the temperature on the
boundary is specified, or of Neumann type where the heat flux, n ◊ —( )k T , is specified. A
generalized Neumann boundary condition can also be used. The generalized Neumann
boundary condition equation is n ◊ — + =( )k T qT g , where q is the heat transfer
coefficient.

Visualization of the temperature, the temperature gradient, and the heat flux k∇T is
available. Plot options include isotherms and heat flux vector field plots.

Example

In the following example, a heat transfer problem with differing material parameters is
solved.
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The problem's 2-D domain consists of a square with an embedded diamond (a square
with 45 degrees rotation). The square region consists of a material with coefficient of heat
conduction of 10 and a density of 2. The diamond-shaped region contains a uniform heat
source of 4, and it has a coefficient of heat conduction of 2 and a density of 1. Both regions
have a heat capacity of 0.1.

Using the PDE App

Start the PDE app and set the application mode to Heat Transfer. In draw mode,
set the x- and y-axis limits to [-0.5 3.5] and select the Axis Equal option from
the Options menu. The square region has corners in (0,0), (3,0), (3,3), and (0,3). The
diamond-shaped region has corners in (1.5,0.5), (2.5,1.5), (1.5,2.5), and (0.5,1.5).

The temperature is kept at 0 on all the outer boundaries, so you do not have to change
the default boundary conditions. Move on to define the PDE parameters (make sure to
set the application mode to Heat Transfer in the PDE mode by double-clicking each
of the two regions and enter the PDE parameters. You want to solve the parabolic heat
equation, so make sure that the Parabolic option is selected. In the square region, enter
a density of 2, a heat capacity of 0.1, and a coefficient of heat conduction of 10. There
is no heat source, so set it to 0. In the diamond-shaped region, enter a density of 1, a
heat capacity of 0.1, and a coefficient of heat conduction of 2. Enter 4 in the edit field for
the heat source. The transversal heat transfer term h(Text – T) is not used, so set h, the
convective heat transfer coefficient, to 0.

Since you are solving a dynamic PDE, you have to define an initial value, and the times
at which you want to solve the PDE. Open the Solve Parameters dialog box by selecting
Parameters from the Solve menu. The dynamics for this problem is very fast—the
temperature reaches steady state in about 0.1 time units. To capture the interesting part
of the dynamics, enter logspace(-2,-1,10) as the vector of times at which to solve the
heat equation. logspace(-2,-1,10) gives 10 logarithmically spaced numbers between
0.01 and 0.1. Set the initial value of the temperature to 0. If the boundary conditions and
the initial value differ, the problem formulation contains discontinuities.

Solve the PDE. By default, the temperature distribution at the last time is plotted. The
best way to visualize the dynamic behavior of the temperature is to animate the solution.
When animating, turn on the Height (3-D plot) option to animate a 3-D plot. Also,
select the Plot in x-y grid option. Using a rectangular grid instead of a triangular grid
speeds up the animation process significantly.

Other interesting visualizations are made by plotting isothermal lines using a contour
plot, and by plotting the heat flux vector field using arrows.
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Visualization of the Temperature and the Heat Flux
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Nonlinear Heat Transfer In a Thin Plate

This example shows how to perform a heat transfer analysis of a thin plate using the
Partial Differential Equation Toolbox™.

The plate is square and the temperature is fixed along the bottom edge. No heat is
transferred from the other three edges (i.e. they are insulated). Heat is transferred from
both the top and bottom faces of the plate by convection and radiation. Because radiation
is included, the problem is nonlinear. One of the purposes of this example is to show how
to handle nonlinearities in PDE problems.

Both a steady state and a transient analysis are performed. In a steady state analysis
we are interested in the final temperature at different points in the plate after it
has reached an equilibrium state. In a transient analysis we are interested in the
temperature in the plate as a function of time. One question that can be answered by
this transient analysis is how long does it take for the plate to reach an equilibrium
temperature.

Heat Transfer Equations for the Plate

The plate has planar dimensions one meter by one meter and is 1 cm thick. Because the
plate is relatively thin compared with the planar dimensions, the temperature can be
assumed constant in the thickness direction; the resulting problem is 2D.

Convection and radiation heat transfer are assumed to take place between the two faces
of the plate and a specified ambient temperature.

The amount of heat transferred from each plate face per unit area due to convection is
defined as

where  is the ambient temperature,  is the temperature at a particular x and y
location on the plate surface, and  is a specified convection coefficient.

The amount of heat transferred from each plate face per unit area due to radiation is
defined as
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where  is the emissivity of the face and  is the Stefan-Boltzmann constant. Because
the heat transferred due to radiation is proportional to the fourth power of the surface
temperature, the problem is nonlinear.

The PDE describing the temperature in this thin plate is

where  is the material density,  is the specific heat,  is the plate thickness, and the
factors of two account for the heat transfer from both plate faces.

It is convenient to rewrite this equation in the form expected by PDE Toolbox

Problem Parameters

The plate is composed of copper which has the following properties

k = 400; % thermal conductivity of copper, W/(m-K)

rho = 8960; % density of copper, kg/m^3

specificHeat = 386; % specific heat of copper, J/(kg-K)

thick = .01; % plate thickness in meters

stefanBoltz = 5.670373e-8; % Stefan-Boltzmann constant, W/(m^2-K^4)

hCoeff = 1; % Convection coefficient, W/(m^2-K)

% The ambient temperature is assumed to be 300 degrees-Kelvin.

ta = 300;

emiss = .5; % emissivity of the plate surface

Definition of PDE Coefficients

The expressions for the coefficients required by PDE Toolbox can easily

be identified by comparing the equation above with the scalar parabolic

equation in the PDE Toolbox documentation.

c = thick*k;

% Because of the radiation boundary condition, the "a" coefficient

% is a function of the temperature, u. It is defined as a MATLAB
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% expression so it can be evaluated for different values of u

% during the analysis.

a = sprintf('2*%g + 2*%g*%g*u.^3', hCoeff, emiss, stefanBoltz);

f = 2*hCoeff*ta + 2*emiss*stefanBoltz*ta^4;

d = thick*rho*specificHeat;

Create the PDE Model with a single dependent variable

numberOfPDE = 1;

pdem = createpde(numberOfPDE);

Geometry and Mesh

For a square, the geometry and mesh are easily defined as shown below.

width = 1;

height = 1;

% define  the square by giving the 4 x-locations followed by the 4

% y-locations of the corners.

gdm = [3 4 0 width width 0 0 0 height height]';

g = decsg(gdm, 'S1', ('S1')');

% Convert the DECSG geometry into a geometry object

% on doing so it is appended to the PDEModel

geometryFromEdges(pdem,g);

% Plot the geometry and display the edge labels for use in the boundary

% condition definition.

figure;

pdegplot(pdem, 'edgeLabels', 'on');

axis([-.1 1.1 -.1 1.1]);

title 'Geometry With Edge Labels Displayed';

% Create the triangular mesh on the square with approximately

% ten elements in each direction.

hmax = .1; % element size

msh=generateMesh(pdem,'Hmax', hmax);

figure;

pdeplot(pdem);

axis equal

title 'Plate With Triangular Element Mesh'

xlabel 'X-coordinate, meters'

ylabel 'Y-coordinate, meters'
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Boundary Conditions

The bottom edge of the plate is set to 1000 degrees-Kelvin.

The boundary conditions are defined below. Three of the plate edges are insulated.
Because a Neumann boundary condition equal zero is the default in the finite element
formulation, the boundary conditions on these edges do not need to be set explicitly. A
Dirichlet condition is set on all nodes on the bottom edge, edge 1,

uBottom = applyBoundaryCondition(pdem,'Edge',1, 'u', 1000);
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Steady State Solution

Because the a and f coefficients are functions of temperature (due to the radiation
boundary conditions), the nonlinear solver pdenonlin must be used to obtain the
solution.

u = pdenonlin(pdem,c,a,f, 'jacobian', 'lumped');

figure;

pdeplot(pdem, 'xydata', u, 'contour', 'on', 'colormap', 'jet');

title 'Temperature In The Plate, Steady State Solution'

xlabel 'X-coordinate, meters'

ylabel 'Y-coordinate, meters'

axis equal

p=msh.Nodes;

plotAlongY(p, u, 0);

title 'Temperature As a Function of the Y-Coordinate'

xlabel 'X-coordinate, meters'

ylabel 'Temperature, degrees-Kelvin'

fprintf('Temperature at the top edge of the plate = %5.1f degrees-K\n', ...

  u(4));

Temperature at the top edge of the plate = 448.9 degrees-K
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Transient Solution

endTime = 5000;

tlist = 0:50:endTime;

numNodes = size(p,2);

% Set the initial temperature of all nodes to ambient, 300 K

u0(1:numNodes) = 300;

% Find all nodes along the bottom edge and set their initial temperature

% to the value of the constant BC, 1000 K

nodesY0 = abs(p(2,:)) < 1.0e-5;

u0(nodesY0) = 1000;

rtol = 1.0e-3;

atol = 1.0e-4;

% The transient solver parabolic automatically handles both linear
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% and nonlinear problems, such as this one.

u = parabolic(u0, tlist, pdem,c,a,f,d,rtol,atol);

figure;

plot(tlist, u(3, :));

grid on

title 'Temperature Along the Top Edge of the Plate as a Function of Time'

xlabel 'Time, seconds'

ylabel 'Temperature, degrees-Kelvin'

%

figure;

pdeplot(pdem, 'xydata', u(:,end), 'contour', 'on', 'colormap', 'jet');

title(sprintf('Temperature In The Plate, Transient Solution( %d seconds)\n', ...

  tlist(1,end)));

xlabel 'X-coordinate, meters'

ylabel 'Y-coordinate, meters'

axis equal;

%

fprintf('\nTemperature at the top edge of the plate(t = %5.1f secs) = %5.1f degrees-K\n', ...

  tlist(1,end), u(4,end));

65 successful steps

0 failed attempts

95 function evaluations

1 partial derivatives

16 LU decompositions

94 solutions of linear systems

Temperature at the top edge of the plate(t = 5000.0 secs) = 447.2 degrees-K
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Summary

As can be seen, the plots of temperature in the plate from the steady state and transient
solution at the ending time are very close. That is, after around 5000 seconds, the
transient solution has reached the steady state values. The temperatures from the two
solutions at the top edge of the plate agree to within one percent.
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Diffusion

Since heat transfer is a diffusion process, the generic diffusion equation has the same
structure as the heat equation:

∂

∂
— —- ( ) =

c

t
cD Q· ,

where c is the concentration, D is the diffusion coefficient and Q is a volume source. If
diffusion process is anisotropic, in which case D is a 2-by-2 matrix, you must solve the
diffusion equation using the generic system application mode of the PDE app. For more
information, see “PDE Menu” on page 4-18.

The boundary conditions can be of Dirichlet type, where the concentration on the
boundary is specified, or of Neumann type, where the flux, n ◊ —( )D c , is specified.
It is also possible to specify a generalized Neumann condition. It is defined by
n ◊ — + =( )D c qc g , where q is a transfer coefficient.

Visualization of the concentration, its gradient, and the flux is available from the Plot
Selection dialog box.
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Solve Poisson's Equation on a Unit Disk

This example shows how to solve a simple elliptic PDE in the form of Poisson's equation
on a unit disk.

The problem formulation is
–ΔU = 1 in Ω, U = 0 on ∂Ω,

where Ω is the unit disk. In this case, the exact solution is

U x y
x y

, ,( ) =
- -1

4

2 2

so the error of the numeric solution can be evaluated for different meshes.

Using the PDE App

With the PDE app started, perform the following steps using the generic scalar mode:

1 Using some of the Option menu features, add a grid and turn on the “snap-to-grid”
feature. Draw a circle by clicking the button with the ellipse icon with the + sign, and
then click-and-drag from the origin, using the right mouse button, to a point at the
circle's perimeter. If the circle that you create is not a perfect unit circle, double-click
the circle. This opens a dialog box where you can specify the exact center location
and radius of the circle.

2 Enter the boundary mode by clicking the button with the ∂Ω icon. The boundaries
of the decomposed geometry are plotted, and the outer boundaries are assigned a
default boundary condition (Dirichlet boundary condition, u = 0 on the boundary).
In this case, this is what we want. If the boundary condition is different, double-
click the boundary to open a dialog box through which you can enter and display the
boundary condition.

3 To define the partial differential equation, click the PDE button. This opens a dialog
box, where you can define the PDE coefficients c, a, and f. In this simple case, they
are all constants: c = 1, f = 1, and a = 0.

4
Click the  button or select Initialize Mesh from the Mesh menu. This
initializes and displays a triangular mesh.
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5

Click the  button or select Refine Mesh from the Mesh menu. This causes a
refinement of the initial mesh, and the new mesh is displayed.

6 To solve the system, just click the = button. The toolbox assembles the PDE problem
and solves the linear system. It also provides a plot of the solution. Using the Plot
Selection dialog box, you can select different types of solution plots.

7 To compare the numerical solution to the exact solution, select the user entry in
the Property pop-up menu for Color in the Plot Selection dialog box. Then input
the MATLAB expression u-(1-x.^2-y.^2)/4 in the user entry edit field. You
obtain a plot of the absolute error in the solution.
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You can also compare the numerical solution to the exact solution by entering some
simple command-line-oriented commands. It is easy to export the mesh data and the
solution to the MATLAB main workspace by using the Export options from the Mesh
and Solve menus. To refine the mesh and solve the PDE successively, simply click the
refine and = buttons until the desired accuracy is achieved. (Another possibility is to use
the adaptive solver.)

Solve Poisson's Equation Using Command-Line Functions

This example shows how to solve Poisson's equation using command-line functions. First
you must create a function that parameterizes the 2-D geometry--in this case a unit
circle. The circleg.m file returns the coordinates of points on the unit circle's boundary.
The file conforms to the file format described on the reference page for pdegeom. You can
display the file by typing type circleg.

Also, you need a function that describes the boundary condition. This is a Dirichlet
boundary condition where u = 0 on the boundary. The circleb1.m file provides the
boundary condition. The file conforms to the file format described on the reference page
for pdebound. You can display the file by typing type circleb1.

Now you can start working at the command line:

[p,e,t] = initmesh('circleg','Hmax',1); % create mesh

error = []; err = 1;

while err > 0.001, % run until error <= 0.001

    [p,e,t] = refinemesh('circleg',p,e,t); % refine mesh

    u = assempde('circleb1',p,e,t,1,0,1); % solve equation

    exact = -(p(1,:).^2+p(2,:).^2-1)/4;

    err = norm(u-exact',inf); % compare with exact solution

    error = [error err]; % keep history of err

end

pdesurf(p,t,u-exact') % plot error
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pdedemo1 performs all the previous steps.
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Scattering Problem

This example shows how to solve a simple scattering problem, where you compute the
waves reflected from an object illuminated by incident waves. For this problem, assume
an infinite horizontal membrane subjected to small vertical displacements U. The
membrane is fixed at the object boundary.

r

V

We assume that the medium is homogeneous so that the wave speed is constant, c.

Note Do not confuse this c with the parameter c appearing in Partial Differential
Equation Toolbox functions.

When the illumination is harmonic in time, we can compute the field by solving a single
steady problem. With
U(x,y,t) = u(x,y)e–iωt,

the wave equation

∂
∂

− =
2

2

2
0

U

t

c U∆

turns into
–ω2u – c2Δu = 0

or the Helmholtz's equation
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–Δu – k2u = 0,

where k, the wave number, is related to the angular frequency ω, the frequency f, and the
wavelength λ by

k
c

f

c
= = =w p p

l

2 2
.

We have yet to specify the boundary conditions. Let the incident wave be a plane wave
traveling in the direction ra  = (cos(a), sin(a)):

V x y t e v x y e
i ka x t i t( , , ) ( , ) ,= =⋅ −( ) −
r r

w w

where

v x y eika x( , ) .= ⋅
r r

u is the sum of v and the reflected wave r,
u = v + r.

The boundary condition for the object's boundary is easy: u = 0, i.e.,
r = –v(x,y)

For acoustic waves, where v is the pressure disturbance, the proper condition would be

∂
∂

=u

n

0.

The reflected wave r travels outward from the object. The condition at the outer
computational boundary should be chosen to allow waves to pass without reflection.
Such conditions are usually called nonreflecting, and we use the classical Sommerfeld
radiation condition. As rx  approaches infinity, r approximately satisfies the one-way
wave equation

∂

∂
— =+

r

t

rc

r

x · ,0



3 Solving PDEs

3-82

which allows waves moving in the positive ξ-direction only (ξ is the radial distance from
the object). With the time-harmonic solution, this turns into the generalized Neumann
boundary condition

r

x · .— =r ikr

For simplicity, let us make the outward normal of the computational domain
approximate the outward ξ-direction.

Using the PDE App

You can now use the PDE app to solve this scattering problem. Using the generic scalar
mode, start by drawing the 2-D geometry of the problem. Let the illuminated object be
a square SQ1 with a side of 0.1 units and center in [0.8 0.5] and rotated 45 degrees,
and let the computational domain be a circle C1 with a radius of 0.45 units and the same
center location. The Constructive Solid Geometry (CSG) model is then given by C1-SQ1.

For the outer boundary (the circle perimeter), the boundary condition is a generalized
Neumann condition with q = –ik. The wave number k = 60, which corresponds to a
wavelength of about 0.1 units, so enter -60i as a constant q and 0 as a constant g.

For the square object's boundary, you have a Dirichlet boundary condition:

r v x y eika x
= - ( ) = -

◊
, .

r r

In this problem, the incident wave is traveling in the –x direction, so the boundary
condition is simply
r = –e–ikx.

Enter this boundary condition in the Boundary Condition dialog box as a Dirichlet
condition: h = 1, r = -exp(-i*60*x). The real part of this is a sinusoid.

For sufficient accuracy, about 10 finite elements per wavelength are needed. The outer
boundary should be located a few object diameters from the object itself. An initial
mesh generation and two successive mesh refinements give approximately the desired
resolution.

Although originally a wave equation, the transformation into a Helmholtz's equation
makes it—in the Partial Differential Equation Toolbox context, but not strictly
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mathematically—an elliptic equation. The elliptic PDE coefficients for this problem are c
= 1, a = -k2 = -3600, and f = 0. Open the PDE Specification dialog box and enter these
values.

The problem can now be solved, and the solution is complex. For a complex solution, the
real part is plotted and a warning message is issued.

The propagation of the reflected waves is computed as
Re(r(x,y)e–iωt),

which is the reflex of

Re .e
i ka x t
r r

⋅ −( )( )w

To see the whole field, plot

Re ( , ) .r x y e eika x i t+( )( )⋅ −
r r

w

The reflected waves and the “shadow” behind the object are clearly visible when you plot
the reflected wave.

To make an animation of the reflected wave, the solution and the mesh data must first be
exported to the main workspace. Then make a script file or type the following commands
at the MATLAB prompt:

h = newplot; hf = get(h,'Parent'); set(hf,'Renderer','zbuffer')

axis tight, set(gca,'DataAspectRatio',[1 1 1]); axis off 

M = moviein(10,hf); 

maxu = max(abs(u)); 

colormap(cool) 

for j = 1:10, 

   ur = real(exp(-j*2*pi/10*sqrt(-1))*u)); 

   pdeplot(p,e,t,'xydata',ur,'colorbar','off','mesh','off'); 

   caxis([-maxu maxu]); 

   axis tight, set(gca,'DataAspectRatio',[1 1 1]); axis off 

   M(:,j) = getframe; 

 end

movie(hf,M,50);

pdedemo2 contains a full command-line implementation of the scattering problem.

../examples/helmholtz-s-equation-on-a-unit-disk-with-a-square-hole.html
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Minimal Surface Problem

This example shows how to solve a nonlinear problem for this equation:

−∇ ⋅
+ ∇

∇
















=1

1

0
2

u

u

where the coefficients c, a, and f do not depend only on x and y, but also on the solution u.

The problem geometry is a unit disk, specified as Ω = {(x, y) | x2 + y2 ≤ 1}, with u = x2 on
∂Ω.

This nonlinear and cannot be solved with the regular elliptic solver. Instead, the
nonlinear solver pdenonlin is used.

This example show how to solve this minimal surface problem using both the PDE app
and command-line functions.

Using the PDE App

Make sure that the application mode in the PDE app is set to Generic Scalar. The
problem domain is simply a unit circle. Draw it and move to the boundary mode to define
the boundary conditions. Use Select All from the Edit menu to select all boundaries.
Then double-click a boundary to open the Boundary Condition dialog box. The Dirichlet
condition u = x2 is entered by typing x.^2 into the r edit box. Next, open the PDE
Specification dialog box to define the PDE. This is an elliptic equation with

c

u

a f=
+ ∇

= =1

1

0 0
2

, , .  and 

The nonlinear c is entered into the c edit box as

1./sqrt(1+ux.^2+uy.^2)

Initialize a mesh and refine it once.
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Before solving the PDE, select Parameters from the Solve menu and check the Use
nonlinear solver option. Also, set the tolerance parameter to 0.001.

Click the = button to solve the PDE. Use the Plot Selection dialog box to plot the solution
in 3-D (check u and continuous selections in the Height column) to visualize the saddle
shape of the solution.

Minimal Surface Using Command-Line Functions

This example shows how to solve the minimal surface problem using command-line
functions. The files circleg and circleb2 contain the geometry specification and
boundary condition functions, respectively.

g = 'circleg';

b = 'circleb2';

c = '1./sqrt(1+ux.^2+uy.^2)';

rtol = 1e-3;

[p,e,t] = initmesh(g);

[p,e,t] = refinemesh(g,p,e,t);

u = pdenonlin(b,p,e,t,c,0,0,'Tol',rtol);

pdesurf(p,t,u)
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You can also run this example by typing pdedemo3.
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Domain Decomposition Problem

This example shows how to perform one-level domain decomposition for complicated
geometries, where you can decompose this geometry into the union of more subdomains
of simpler structure. Such structures are often introduced by the PDE app.

Assume now that Ω is the disjoint union of some subdomains Ω1, Ω2, . . . , Ωn. Then
you could renumber the nodes of a mesh on Ω such that the indices of the nodes of each
subdomain are grouped together, while all the indices of nodes common to two or more
subdomains come last. Since K has nonzero entries only at the lines and columns that are
indices of neighboring nodes, the stiffness matrix is partitioned as follows:

K

K B

K B

K B

B B B C

T

T

n n
T

n

=

Ê

Ë

Á
Á
Á
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˜
˜
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L
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L

L

while the right side is

F

f

f

f

f

n

c
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Ê

Ë

Á
Á
Á
Á
Á
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ˆ

¯

˜
˜
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˜
˜
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2

M

The Partial Differential Equation Toolbox function assempde can assemble the matrices
Kj, Bj, fj, and C separately. You have full control over the storage and further processing
of these matrices.

Furthermore, the structure of the linear system
Ku = F

is simplified by decomposing K into the partitioned matrix.
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Now consider the geometry of the L-shaped membrane. You can plot the geometry of the
membrane by typing

pdegplot('lshapeg')

Notice the borders between the subdomains. There are three subdomains. Thus the
matrix formulas with n = 3 can be used. Now generate a mesh for the geometry:

[p,e,t] = initmesh('lshapeg'); 

[p,e,t] = refinemesh('lshapeg',p,e,t); 

[p,e,t] = refinemesh('lshapeg',p,e,t); 

So for this case, with n = 3, you have

K B

K B

K B
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u

u

u

u

T

T

T

c

1 1

2 2

3 3

1 2 3

1

2

3

0 0

0 0

0 0

Ê

Ë

Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜

Ê

Ë

Á
Á
Á
ÁÁ

ˆ

¯̄

˜
˜
˜
˜̃

=

Ê

Ë

Á
Á
Á
ÁÁ

ˆ

¯

˜
˜
˜
˜̃

f

f

f

fc

1

2

3

,

and the solution is given by block elimination:

( )C B K B B K B B K B u f B K f B K f BT T T
c c- - - = - - -

- - - - -
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-

= -( )

L

In the following MATLAB solution, a more efficient algorithm using Cholesky
factorization is used:

time = []; 

np = size(p,2); 

% Find common points 

c = pdesdp(p,e,t); 

nc = length(c); 

C = zeros(nc,nc); 

FC = zeros(nc,1); 
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[i1,c1] = pdesdp(p,e,t,1);ic1 = pdesubix(c,c1); 

[K,F] = assempde('lshapeb',p,e,t,1,0,1,time,1); 

K1 = K(i1,i1);d = symamd(K1);i1 = i1(d); 

K1 = chol(K1(d,d));B1 = K(c1,i1);a1 = B1/K1; 

C(ic1,ic1) = C(ic1,ic1)+K(c1,c1)-a1*a1'; 

f1 = F(i1);e1 = K1'\f1;FC(ic1) = FC(ic1)+F(c1)-a1*e1; 

[i2,c2] = pdesdp(p,e,t,2);ic2 = pdesubix(c,c2); 

[K,F] = assempde('lshapeb',p,e,t,1,0,1,time,2); 

K2 = K(i2,i2);d = symamd(K2);i2 = i2(d); 

K2 = chol(K2(d,d));B2 = K(c2,i2);a2 = B2/K2; 

C(ic2,ic2) = C(ic2,ic2)+K(c2,c2)-a2*a2'; 

f2 = F(i2);e2 = K2'\f2;FC(ic2) = FC(ic2)+F(c2)-a2*e2; 

[i3,c3] = pdesdp(p,e,t,3);ic3 = pdesubix(c,c3); 

[K,F] = assempde('lshapeb',p,e,t,1,0,1,time,3); 

K3 = K(i3,i3);d = symamd(K3);i3 = i3(d); 

K3 = chol(K3(d,d));B3 = K(c3,i3);a3 = B3/K3; 

C(ic3,ic3) = C(ic3,ic3)+K(c3,c3)-a3*a3'; 

f3 = F(i3);e3 = K3'\f3;FC(ic3) = FC(ic3)+F(c3)-a3*e3; 

% Solve 

u = zeros(np,1); 

u(c) = C\ FC; 

u(i1) = K1\(e1-a1'*u(c1)); 

u(i2) = K2\(e2-a2'*u(c2)); 

u(i3) = K3\(e3-a3'*u(c3));

The problem can also be solved by typing

% Compare with solution not using subdomains 

[K,F] = assempde('lshapeb',p,e,t,1,0,1);u1 = K\F; 

norm(u-u1,'inf')

pdesurf(p,t,u)

You can run this entire example by typing pdedemo4.

../examples/poisson-s-equation-using-domain-decomposition.html
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Heat Equation for Metal Block with Cavity

This example shows how to solve a heat equation that describes the diffusion of heat in a
body. The heat equation has the form:

d
u

t
u

∂

∂
=- D 0.

Consider a metal block containing rectangular crack or cavity. The left side of the block
is heated to 100 degrees centigrade. At the right side of the metal block, heat is flowing
from the block to the surrounding air at a constant rate. All the other block boundaries
are isolated. This leads to the following set of boundary conditions (when proper scaling
of t is chosen):

• u = 100 on the left side (Dirichlet condition)
• ∂u/∂n = –10 on the right side (Neumann condition)
• ∂u/∂n = 0 on all other boundaries (Neumann condition)

Also, for the heat equation we need an initial value: the temperature in the metal block
at the starting time t0. In this case, the temperature of the block is 0 degrees at the time
we start applying heat.

Finally, to complete the problem formulation, we specify that the starting time is 0 and
that we want to study the heat distribution during the first five seconds.

Using the PDE App

Once you have started the PDE app and selected the Generic Scalar mode, drawing
the CSG model can be done very quickly: Draw a rectangle (R1) with the corners in x =
[-0.5 0.5 0.5 -0.5] and y = [-0.8 -0.8 0.8 0.8]. Draw another rectangle (R2)
to represent the rectangular cavity. Its corners should have the coordinates x = [-0.05
0.05 0.05 -0.05] and y = [-0.4 -0.4 0.4 0.4]. To assist in drawing the narrow
rectangle representing the cavity, open the Grid Spacing dialog box from the Options
and enter x-axis extra ticks at -0.05 and 0.05. Then turn on the grid and the “snap-to-
grid” feature. A rectangular cavity with the correct dimensions is then easy to draw.
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The CSG model of the metal block is now simply expressed as the set formula R1-R2.

Leave the draw mode and enter the boundary mode by clicking the ∂Ω button, and
continue by selecting boundaries and specifying the boundary conditions. Using the
Select All option from the Edit menu and then defining the Neumann condition

∂

∂
=

u

n

0

for all boundaries first is a good idea since that leaves only the leftmost and rightmost
boundaries to define individually.

The next step is to open the PDE Specification dialog box and enter the PDE coefficients.

The generic parabolic PDE that Partial Differential Equation Toolbox functions solve is

d c au f
u

t
u

∂

∂
—-— ◊ ( ) + = ,

with initial values u0 = u(t0) and the times at which to compute a solution specified in the
array tlist.
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For this case, you have d = 1, c = 1, a = 0, and f = 0.

Initialize the mesh by clicking the Δ button. If you want, you can refine the mesh by
clicking the Refine button.

The initial values u0 = 0, and the list of times is entered as the MATLAB array
[0:0.5:5]. They are entered into the Solve Parameters dialog box, which is accessed by
selecting Parameters from the Solve menu.

The problem can now be solved. Pressing the = button solves the heat equation at 11
different times from 0 to 5 seconds. By default, an interpolated plot of the solution, i.e.,
the heat distribution, at the end of the time span is displayed.

A more interesting way to visualize the dynamics of the heat distribution process is to
animate the solution. To start an animation, check the Animation check box in the
Plot selection dialog box. Also, select the colormap hot. Click the Plot button to start
a recording of the solution plots in a separate figure window. The recorded animation is
then “played” five times.

The temperature in the block rises very quickly. To improve the animation and
focus on the first second, try to change the list of times to the MATLAB expression
logspace(-2,0.5,20).

Also, try to change the heat capacity coefficient d and the heat flow at the rightmost
boundary to see how they affect the heat distribution.
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Metal Block Using Command-Line Functions

This example shows how to solve for the heat distribution in the metal block with cavity
using command-line functions. First, create geometry and boundary condition files. The
files used here were created using the PDE app. crackg.m describes the geometry of the
metal block, and crackb.m describes the boundary conditions.

To create an initial mesh, call initmesh:

[p,e,t]=initmesh('crackg');

The heat equation can now be solved using the parabolic function. The generic
parabolic PDE that parabolic solves is

with initial value u 0 = u ( t 0), and the times at which to compute a solution specified in
the array tlist. For this case, you have d = 1, c = 1, a = 0, and f = 0. The initial value u
0 = 0, and the list of times, tlist, is set to the array 0:0.5:5.

d = 1;

c = 1;

a = 0;

f = 0;

u0 = 0;

tlist = 0:0.5:5;

To compute the solution, call parabolic:

u = parabolic(u0,tlist,'crackb',p,e,t,c,a,f,d);

153 successful steps

0 failed attempts

308 function evaluations

1 partial derivatives

28 LU decompositions

307 solutions of linear systems

The solution u is a matrix with 11 columns, where each column corresponds to the
solution at the 11 points in time 0, 0.5, . . . , 4.5, 5.0.

Plot the solution at t = 5.0 seconds using interpolated shading and a hidden mesh. Use
the hot colormap:
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pdeplot(p,e,t,'xydata',u(:,11),'mesh','off','colormap','hot')
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Heat Distribution in a Radioactive Rod

This example shows how to solve a 3-D parabolic PDE problem by reducing the problem
to 2-D using coordinate transformation. For a step-by-step command-line solution, see
Heat Distribution in a Circular Cylindrical Rod.

Consider a cylindrical radioactive rod. At the left end, heat is continuously added. The
right end is kept at a constant temperature. At the outer boundary, heat is exchanged
with the surroundings by transfer. At the same time, heat is uniformly produced in the
whole rod due to radioactive processes. Assume that the initial temperature is zero. This
leads to the following problem:

rC k f
u

t
u

∂

∂
— —- ( ) =· ,

where ρ is the density, C is the rod's thermal capacity, k is the thermal conductivity, and
f is the radioactive heat source.

The density for this metal rod is 7800 kg/m3, the thermal capacity is 500 Ws/kgºC, and
the thermal conductivity is 40 W/mºC. The heat source is 20000 W/m3. The temperature
at the right end is 100 ºC. The surrounding temperature at the outer boundary is 100 ºC,
and the heat transfer coefficient is 50 W/m2ºC. The heat flux at the left end is 5000 W/m2.

But this is a cylindrical problem, so you need to transform the equation, using the
cylindrical coordinates r, z, and θ. Due to symmetry, the solution is independent of θ, so
the transformed equation is

r C kr kr fr
u

t r

u

r z

u

z
r ∂

∂
∂
∂

∂
∂

∂
∂

∂
∂

- Ê
ËÁ

ˆ
¯̃

- Ê
ËÁ

ˆ
¯̃

= .

The boundary conditions are:

• r

n k u· —( )  = 5000 at the left end of the rod (Neumann condition). Since the
generalized Neumann condition in Partial Differential Equation Toolbox software
is rn k u· —( )  + qu = g, and  c depends on r in this problem (c = kr), this boundary

condition is expressed as rn c u· —( )  = 5000r.

• u = 100 at the right end of the rod (Dirichlet condition).

../examples/heat-distribution-in-a-circular-cylindrical-rod.html
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• r

n k u· —( )  = 50(100-u) at the outer boundary (generalized Neumann condition).
In Partial Differential Equation Toolbox software, this must be expressed as
r

n c u· —( )  + 50r  ·  u = 50r · 100.

• The cylinder axis r  = 0 is not a boundary in the original problem, but in our 2-D
treatment it has become one. We must give the artificial boundary condition rn c u· —( )

here.

The initial value is u(t0) = 0.

Using the PDE App

Solve this problem using the PDE app. Model the rod as a rectangle with its base along
the x-axis, and let the x-axis be the z direction and the y-axis be the r direction. A
rectangle with corners in (-1.5,0), (1.5,0), (1.5,0.2), and (-1.5,0.2) would then model a rod
with length 3 and radius 0.2.

Enter the boundary conditions by double-clicking the boundaries to open the Boundary
Condition dialog box. For the left end, use Neumann conditions with 0 for q and 5000*y
for g. For the right end, use Dirichlet conditions with 1 for h and 100 for r. For the outer
boundary, use Neumann conditions with 50*y for q and 50*y*100 for g. For the axis,
use Neumann conditions with 0 for q and g.

Enter the coefficients into the PDE Specification dialog box: c is 40*y, a is zero, d is
7800*500*y, and f is 20000*y.

Animate the solution over a span of 20000 seconds (computing the solution every 1000
seconds). We can see how heat flows in over the right and outer boundaries as long as u 
< 100, and out when u  > 100. You can also open the PDE Specification dialog box, and
change the PDE type to Elliptic. This shows the solution when u does not depend on
time, i.e., the steady state solution. The profound effect of cooling on the outer boundary
can be demonstrated by setting the heat transfer coefficient to zero.
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Wave Equation

As an example of a hyperbolic PDE, let us solve the wave equation

∂

∂
=-

2

2
0

u

t

uD

for transverse vibrations of a membrane on a square with corners in (–1,–1), (–1,1), (1,–
1), and (1,1). The membrane is fixed (u = 0) at the left and right sides, and is free (∂u/
∂n = 0) at the upper and lower sides. Additionally, we need initial values for u(t0) and
∂u(t0)/∂t

The initial values need to match the boundary conditions for the solution to be well-
behaved. If we start at t = 0,
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are initial values that satisfy the boundary conditions. The reason for the arctan and
exponential functions is to introduce more modes into the solution.

Using the PDE App

Use the PDE app in the generic scalar mode. Draw the square using the Rectangle/
square option from the Draw menu or the button with the rectangle icon. Proceed
to define the boundary conditions by clicking the ∂Ω button and then double-click the
boundaries to define the boundary conditions.

Initialize the mesh by clicking the Δ button or by selecting Initialize mesh from the
Mesh menu.
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Also, define the hyperbolic PDE by opening the PDE Specification dialog box, selecting
the hyperbolic PDE, and entering the appropriate coefficient values. The general
hyperbolic PDE is described by

d
u

t
c u au f

∂

∂
— ◊ —( ) + =-

2

2
,

so for the wave equation you get c = 1, a = 0, f = 0, and d = 1.

Before solving the PDE, select Parameters from the Solve menu to open the Solve
Parameters dialog box. As a list of times, enter linspace(0,5,31) and as initial values
for u:

atan(cos(pi/2*x)) 

and for ∂u/∂t , enter

3*sin(pi*x).*exp(sin(pi/2*y))

Finally, click the = button to compute the solution. The best plot for viewing the waves
moving in the x and y directions is an animation of the whole sequence of solutions.
Animation is a very real time and memory consuming feature, so you may have to cut
down on the number of times at which to compute a solution. A good suggestion is to
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check the Plot in x-y grid option. Using an x-y grid can speed up the animation process
significantly.

Wave Equation Using Command-Line Functions

This example shows how to solve the wave equation using command-line functions.
It solves the equation with the preceding boundary conditions and the initial values,
starting at time 0 and then every 0.05 seconds for five seconds.

The geometry is described in the file squareg.m and the boundary conditions in the
file squareb3.m. The following sequence of commands then generates a solution and
animates it. First, create a mesh and define the initial values and the times for which
you want to solve the equation:

[p,e,t] = initmesh('squareg');

x = p(1,:)'; y = p(2,:)';

u0 = atan(cos(pi/2*x));

ut0 = 3*sin(pi*x).*exp(sin(pi/2*y));

n = 31; % number of frames in eventual animation

tlist = linspace(0,5,n); % list of times

You are now ready to solve the wave equation. The general form for the hyperbolic PDE
is

so here you have d = 1, c = 1, a = 0, and f = 0:

d = 1;

c = 1;

a = 0;

f = 0;

uu=hyperbolic(u0,ut0,tlist,'squareb3',p,e,t,c,a,f,d);

428 successful steps

62 failed attempts

982 function evaluations
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1 partial derivatives

142 LU decompositions

981 solutions of linear systems

To visualize the solution, you can animate it. Interpolate to a rectangular grid to speed
up the plotting:

delta = -1:0.1:1;

[uxy,tn,a2,a3] = tri2grid(p,t,uu(:,1),delta,delta);

gp = [tn;a2;a3];

umax = max(max(uu));

umin = min(min(uu));

newplot

M = moviein(n);

for i=1:n,

    pdeplot(p,e,t,'xydata',uu(:,i),'zdata',uu(:,i),...

    'mesh','off','xygrid','on','gridparam',gp,...

    'colorbar','off','zstyle','continuous');

    axis([-1 1 -1 1 umin umax]); caxis([umin umax]);

    M(:,i) = getframe;

end

movie(M,10);
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You can find a complete solution of this problem, including animation, in pdedemo6. If
you have lots of memory, you can try increasing n, the number of frames in the movie.
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Eigenvalues and Eigenfunctions for the L-Shaped Membrane
The problem of finding the eigenvalues and the corresponding eigenfunctions of an
L-shaped membrane is of interest to all MATLAB users, since the plot of the first
eigenfunction is the MathWorks® logo. In fact, you can compare the eigenvalues and
eigenfunctions computed by Partial Differential Equation Toolbox software to the ones
produced by the MATLAB function membrane.

The problem is to compute all eigenmodes with eigenvalues < 100 for the eigenmode PDE
problem
–Δu = λu

on the geometry of the L-shaped membrane. u = 0 on the boundary (Dirichlet condition).

Using the PDE App

With the PDE app active, check that the current mode is set to Generic Scalar. Then
draw the L-shape as a polygon with corners in (0,0), (–1,0), (–1,–1), (1,–1), (1,1), and (0,1).

There is no need to define any boundary conditions for this problem since the default
condition—u = 0 on the boundary—is the correct one. Therefore, you can continue
to the next step: to initialize the mesh. Refine the initial mesh twice. Defining the
eigenvalue PDE problem is also easy. Open the PDE Specification dialog box and select
Eigenmodes. The default values for the PDE coefficients, c = 1, a = 0, d = 1, all match
the problem description, so you can exit the PDE Specification dialog box by clicking the
OK button.

Open the Solve Parameters dialog box by selecting Parameters from the Solve menu.
The dialog box contains an edit box for entering the eigenvalue search range. The default
entry is [0 100], which is just what you want.

Finally, solve the L-shaped membrane problem by clicking the = button. The solution
displayed is the first eigenfunction. The value of the first (smallest) eigenvalue is also
displayed. You find the number of eigenvalues on the information line at the bottom of
the PDE app. You can open the Plot Selection dialog box and choose which eigenfunction
to plot by selecting from a pop-up menu of the corresponding eigenvalues.

Using Command-Line Functions

The geometry of the L-shaped membrane is described in the file lshapeg.m and the
boundary conditions in the file lshapeb.m.
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First, initialize the mesh and refine it twice using the command line functions at the
MATLAB prompt:

[p,e,t] = initmesh('lshapeg'); 

[p,e,t] = refinemesh('lshapeg',p,e,t); 

[p,e,t] = refinemesh('lshapeg',p,e,t); 

Recall the general eigenvalue PDE problem description:

-— ◊ —( ) + =c u au dul ,

This means that in this case you have c = 1, a = 0, and d = 1. The syntax of pdeeig, the
Partial Differential Equation Toolbox eigenvalue solver, is

[v,l] = pdeeig(b,p,e,t,c,a,d,r) 

The input argument r is a two-element vector indicating the interval on the real axis
where pdeeig searches for eigenvalues. Here you are looking for eigenvalues < 100, so
the interval you use is [0 100].

Now you can call pdeeig and see how many eigenvalues you find:

[v,l] = pdeeig('lshapeb',p,e,t,1,0,1,[0 100]); 

There are 19 eigenvalues smaller than 100. Plot the first eigenmode and compare it to
the MATLAB membrane function:

pdesurf(p,t,v(:,1)) 

figure 

membrane(1,20,9,9) 

membrane can produce the first 12 eigenfunctions for the L-shaped membrane. Compare
also the 12th eigenmodes:

figure 

pdesurf(p,t,v(:,12)) 

figure 

membrane(12,20,9,9) 

Looking at the following eigenmodes, you can see how the number of oscillations
increases. The eigenfunctions are symmetric or antisymmetric around the diagonal
from (0,0) to (1,-1), which divides the L-shaped membrane into two mirror images. In a
practical computation, you could take advantage of such symmetries in the PDE problem,
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and solve over a region half the size. The eigenvalues of the full L-shaped membrane
are the union of those of the half with Dirichlet boundary condition along the diagonal
(eigenvalues 2, 4, 7, 11, 13, 16, and 17) and those with Neumann boundary condition
(eigenvalues 1, 3, 5, 6, 10, 12, 14, and 15).

The eigenvalues λ8 and λ9 make up a double eigenvalue for the PDE at around 49.64.
Also, the eigenvalues λ18 and λ19 make up another double eigenvalue at around 99.87.
You may have gotten two different but close values. The default triangulation made
by initmesh is not symmetric around the diagonal, but a symmetric grid gives a
matrix with a true double eigenvalue. Each of the eigenfunctions u8 and u9 consists of
three copies of eigenfunctions over the unit square, corresponding to its double second
eigenvalue. You may not have obtained the zero values along a diagonal of the square—
any line through the center of the square may have been computed. This shows a general
fact about multiple eigenvalues for symmetric matrices; namely that any vector in the
invariant subspace is equally valid as an eigenvector. The two eigenfunctions u8 and u9
are orthogonal to each other if the dividing lines make right angles. Check your solutions
for that.

Actually, the eigenvalues of the square can be computed exactly. They are
(m2 + n2)π2

e.g., the double eigenvalue λ18 and λ19 is 10π2, which is pretty close to 100.

If you compute the FEM approximation with only one refinement, you would only find 16
eigenvalues, and you obtain the wrong solution to the original problem. You can of course
check for this situation by computing the eigenvalues over a slightly larger range than
the original problem.

You get some information from the printout in the MATLAB command window that
is printed during the computation. For this problem, the algorithm computed a new
set of eigenvalue approximations and tested for convergence every third step. In the
output, you get the step number, the time in seconds since the start of the eigenvalue
computation, and the number of converged eigenvalues with eigenvalues both inside and
outside the interval counted.

Here is what MATLAB wrote:

              Basis= 10,  Time=   2.70,  New conv eig=  0

              Basis= 13,  Time=   3.50,  New conv eig=  0

              Basis= 16,  Time=   4.36,  New conv eig=  0

              Basis= 19,  Time=   5.34,  New conv eig=  1
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              Basis= 22,  Time=   6.46,  New conv eig=  2

              Basis= 25,  Time=   7.61,  New conv eig=  3

              Basis= 28,  Time=   8.86,  New conv eig=  3

              Basis= 31,  Time=  10.23,  New conv eig=  5

              Basis= 34,  Time=  11.69,  New conv eig=  5

              Basis= 37,  Time=  13.28,  New conv eig=  7

              Basis= 40,  Time=  14.97,  New conv eig=  8

              Basis= 43,  Time=  16.77,  New conv eig=  9

              Basis= 46,  Time=  18.70,  New conv eig= 11

              Basis= 49,  Time=  20.73,  New conv eig= 11

              Basis= 52,  Time=  22.90,  New conv eig= 13

              Basis= 55,  Time=  25.13,  New conv eig= 14

              Basis= 58,  Time=  27.58,  New conv eig= 14

              Basis= 61,  Time=  30.13,  New conv eig= 15

              Basis= 64,  Time=  32.83,  New conv eig= 16

              Basis= 67,  Time=  35.64,  New conv eig= 18

              Basis= 70,  Time=  38.62,  New conv eig= 22

End of sweep: Basis= 70,  Time=  38.62,  New conv eig= 22

              Basis= 32,  Time=  43.29,  New conv eig=  0

              Basis= 35,  Time=  44.70,  New conv eig=  0

              Basis= 38,  Time=  46.22,  New conv eig=  0

              Basis= 41,  Time=  47.81,  New conv eig=  0

              Basis= 44,  Time=  49.52,  New conv eig=  0

              Basis= 47,  Time=  51.35,  New conv eig=  0

              Basis= 50,  Time=  53.27,  New conv eig=  0

              Basis= 53,  Time=  55.30,  New conv eig=  0

End of sweep: Basis= 53,  Time=  55.30,  New conv eig=  0

You can see that two Arnoldi runs were made. In the first, 22 eigenvalues converged
after a basis of size 70 was computed; in the second, where the vectors were
orthogonalized against all the 22 converged vectors, the smallest eigenvalue stabilized at
a value outside of the interval [0, 100], so the algorithm signaled convergence. Of the 22
converged eigenvalues, 19 were inside the search interval.
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L-Shaped Membrane with a Rounded Corner

An extension of this problem is to compute the eigenvalues for an L-shaped membrane
where the inner corner at the “knee” is rounded. The roundness is created by adding a
circle so that the circle's arc is a part of the L-shaped membrane's boundary. By varying
the circle's radius, the degree of roundness can be controlled. The lshapec file is an
extension of an ordinary model file created using the PDE app. It contains the lines

pdepoly([-1, 1, 1, 0, 0, -1],...

        [-1, -1, 1, 1, 0, 0],'P1'); 

pdecirc(-a,a,a,'C1'); 

pderect([-a 0 a 0],'SQ1'); 

The extra circle and rectangle that are added using pdecirc and pderect to create
the rounded corner are affected by the added input argument a through a couple of
extra lines of MATLAB code. This is possible since Partial Differential Equation Toolbox
software is a part of the open MATLAB environment.

With lshapec you can create L-shaped rounded geometries with different degrees of
roundness. If you use lshapec without an input argument, a default radius of 0.5 is
used. Otherwise, use lshapec(a), where a is the radius of the circle.

Experimenting using different values for the radius a shows you that the eigenvalues
and the frequencies of the corresponding eigenmodes decrease as the radius increases,
and the shape of the L-shaped membrane becomes more rounded. In the following figure,
the first eigenmode of an L-shaped membrane with a rounded corner is plotted.
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First Eigenmode for an L-Shaped Membrane with a Rounded Corner
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Eigenvalues and Eigenmodes of a Square

Let us study the eigenvalues and eigenmodes of a square with an interesting set of
boundary conditions. The square has corners in (-1,-1), (-1,1), (1,1), and (1,-1). The
boundary conditions are as follows:

• On the left boundary, the Dirichlet condition u = 0.
• On the upper and lower boundary, the Neumann condition

∂

∂
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n

0.

• On the right boundary, the generalized Neumann condition
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The eigenvalue PDE problem is
–Δu = λu .

We are interested in the eigenvalues smaller than 10 and the corresponding eigenmodes,
so the search range is [-Inf 10]. The sign in the generalized Neumann condition is
such that there are negative eigenvalues.

Using the PDE App

Using the PDE app in the generic scalar mode, draw the square using the Rectangle/
square option from the Draw menu or the button with the rectangle icon. Then define
the boundary conditions by clicking the ∂Ω button and then double-click the boundaries
to define the boundary conditions. On the right side boundary, you have the generalized
Neumann conditions, and you enter them as constants: g = 0 and g = –3/4.

Initialize the mesh and refine it once by clicking the Δ and refine buttons or by selecting
the corresponding options from the Mesh menu.

Also, define the eigenvalue PDE problem by opening the PDE Specification dialog box
and selecting the Eigenmodes option. The general eigenvalue PDE is described by

-— ◊ —( ) + =c u au dul ,
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so for this problem you use the default values c = 1, a = 0, and d = 1. Also, in the Solve
Parameters dialog box, enter the eigenvalue range as the MATLAB vector [-Inf 10].

Finally, click the = button to compute the solution. By default, the first eigenfunction is
plotted. You can plot the other eigenfunctions by selecting the corresponding eigenvalue
from a pop-up menu in the Plot Selection dialog box. The pop-up menu contains all the
eigenvalues found in the specified range. You can also export the eigenfunctions and
eigenvalues to the MATLAB main workspace by using the Export Solution option from
the Solve menu.

Eigenvalues of a Square Using Command-Line Functions

This example shows how to compute the eigenvalues and eigenmodes of a square domain
using command-line functions. The geometry description file and boundary condition file
for this problem are called squareg.m and squareb2.m, respectively. Create and refine
the mesh for the problem:

[p,e,t]=initmesh('squareg');

[p,e,t]=refinemesh('squareg',p,e,t);

The eigenvalue PDE coefficients for this problem are c = 1, a = 0, and d = 1. You
can enter the eigenvalue range r as the vector [-Inf 10]. pdeeig returns two
output arguments, the eigenvalues as an array l and a matrix v of corresponding
eigenfunctions:

[v,l]=pdeeig('squareb2',p,e,t,1,0,1,[-Inf 10]);

              Basis= 10,  Time=   0.05,  New conv eig=  0

              Basis= 17,  Time=   0.09,  New conv eig=  2

              Basis= 24,  Time=   0.09,  New conv eig=  8

End of sweep: Basis= 24,  Time=   0.09,  New conv eig=  8

              Basis= 18,  Time=   0.19,  New conv eig=  0

              Basis= 25,  Time=   0.19,  New conv eig=  0

End of sweep: Basis= 25,  Time=   0.19,  New conv eig=  0

To plot the fourth eigenfunction as a surface plot, enter

pdesurf(p,t,v(:,4))
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This problem is separable, meaning

The functions f and g are eigenfunctions in the x and y directions, respectively. In
the x direction, the first eigenmode is a slowly increasing exponential function. The
higher modes include sinusoids. In the y direction, the first eigenmode is a straight
line (constant), the second is half a cosine, the third is a full cosine, the fourth is one
and a half full cosines, etc. These eigenmodes in the y direction are associated with the
eigenvalues
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There are five eigenvalues smaller than 10 for this problem, and the first one is even
negative (-0.4145). It is possible to trace the preceding eigenvalues in the eigenvalues of
the solution. Looking at a plot of the first eigenmode, you can see that it is made up of the
first eigenmodes in the x and y directions. The second eigenmode is made up of the first
eigenmode in the x direction and the second eigenmode in the y direction.

Look at the difference between the first and the second eigenvalue compared to :

l(2)-l(1)

ans =

    2.4745

pi^2/4

ans =

    2.4674

Likewise, the fifth eigenmode is made up of the first eigenmode in the x direction and the
third eigenmode in the y direction. As expected, l(5)-l(1) is approximately equal to :

l(5) - l(1) - pi^2

ans =

    0.0685

You can explore higher modes by increasing the search range to include eigenvalues
greater than 10.
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Vibration Of a Circular Membrane Using The MATLAB eigs
Function

This example shows the calculation of the vibration modes of a circular membrane. The
calculation of vibration modes requires the solution of the eigenvalue partial differential
equation (PDE). In this example the solution of the eigenvalue problem is performed
using both the PDE Toolbox™ pdeeig solver and the core MATLAB™ eigs eigensolver.

The main objective of this example is to show how eigs can be used with PDE Toolbox™.
Generally, the eigenvalues calculated by pdeeig and eigs are practically identical.
However, sometimes, it is simply more convenient to use eigs than pdeeig. One
example of this is when it is desired to calculate a specified number of eigenvalues in the
vicinity of a user-specified target value. pdeeig requires that a lower and upper bound
surrounding this target value be specified. eigs requires only that the target eigenvalue
and the desired number of eigenvalues be specified.

Create a pde entity for a PDE with a single dependent variable

numberOfPDE = 1;

pdem = createpde(numberOfPDE);

Geometry And Mesh

The geometry for a circle can easily be defined as shown below.

radius = 2;

g = decsg([1 0 0 radius]', 'C1', ('C1')');

% Create a geometry object and append it to the PDE Model

geometryFromEdges(pdem,g);

% Plot the geometry and display the edge labels for use in the boundary

% condition definition.

figure;

pdegplot(pdem, 'edgeLabels', 'on');

axis equal

title 'Geometry With Edge Labels Displayed';

generateMesh(pdem,'hmax', .2);

% [p,e,t] = initmesh(g, 'hmax', .2);



 Vibration Of a Circular Membrane Using The MATLAB eigs Function

3-115

Define the PDE Coefficients and Boundary Conditions

c = 1e2;

a = 0;

f = 0;

d = 10;

% Solution is zero at all four outer edges of the circle

bOuter = applyBoundaryCondition(pdem,'Edge',(1:4), 'u', 0);

Solve the eigenvalue problem using eigs

Use assempde and assema to calculate the global finite element mass and stiffness
matrices.
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[K,~,B] = assempde(pdem,c,a,f);

[~,M] = assema(pdem,c,d,f);

M = B'*M*B; % apply the constraints to the mass matrix from |assema|

sigma = 1e2;

numberEigenvalues = 5;

[eigenvectorsEigs,eigenvaluesEigs] = eigs(K,M,numberEigenvalues,sigma);

% eigs orders the eigenvalues (and their eigenvectors) from highest to

% lowest. Reorder these from lowest to highest to be consistent with |pdeeig|.

eigenvaluesEigs = flipud(diag(eigenvaluesEigs));

% Reorder the eigenvectors. Also transform the eigenvectors with constrained

% equations removed to the full eigenvector including constrained equations.

eigenvectorsEigs = B*fliplr(eigenvectorsEigs);

Solve the eigenvalue problem using pdeeig

Define the eigenvalue range for pdeeig from the output eigenvalues from eigs so that it
computes the same ones.

r = [eigenvaluesEigs(1)*.99 eigenvaluesEigs(end)*1.01];

[eigenvectorsPde,eigenvaluesPde] = pdeeig(pdem,c,a,d,r);

              Basis= 10,  Time=   0.02,  New conv eig=  1

              Basis= 19,  Time=   0.02,  New conv eig=  3

              Basis= 28,  Time=   0.02,  New conv eig=  8

              Basis= 37,  Time=   0.02,  New conv eig= 12

End of sweep: Basis= 37,  Time=   0.02,  New conv eig= 12

              Basis= 22,  Time=   0.02,  New conv eig=  0

              Basis= 31,  Time=   0.06,  New conv eig=  0

End of sweep: Basis= 31,  Time=   0.06,  New conv eig=  0

Compare the solutions computed by eigs and pdeeig

eigenValueDiff = eigenvaluesPde - eigenvaluesEigs;

fprintf('Maximum difference in eigenvalues from pdeeig and eigs: %e\n', ...

  norm(eigenValueDiff,inf));

%

% As can be seen, both functions calculate the same eigenvalues. For any

% eigenvalue, the eigenvector can be multiplied by an arbitrary scalar.

% eigs and pdeeigs choose a different arbitrary scalar for normalizing

% their eigenvectors as shown in the figure below.

%

h = figure;

h.Position = [1 1 2 1].*h.Position;

subplot(1,2,1);
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axis equal

pdeplot(pdem,'xydata', eigenvectorsEigs(:,end), 'contour', 'on');

title(sprintf('eigs eigenvector, eigenvalue: %12.4e', eigenvaluesEigs(end)));

xlabel('x');

ylabel('y');

subplot(1,2,2);

axis equal

pdeplot(pdem,'xydata', eigenvectorsPde(:,end), 'contour', 'on');

title(sprintf('pdeeig eigenvector, eigenvalue: %12.4e', eigenvaluesPde(end)));

xlabel('x');

ylabel('y');

Maximum difference in eigenvalues from pdeeig and eigs: 2.984279e-13
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Solve PDEs Programmatically
In this section...

“Alternative 2-D Workflow” on page 3-118
“When You Need Programmatic Solutions” on page 3-118
“Data Structures in Partial Differential Equation Toolbox” on page 3-118
“Tips for Solving PDEs Programmatically” on page 3-122

Alternative 2-D Workflow

This section describes an alternative approach to that of “Solve Problems Using
PDEModel Objects” on page 2-11. This alternative is for 2-D problems only, and is not the
recommended approach. The section exists primarily to help you understand code that
was written before the advent of PDEModel objects.

When You Need Programmatic Solutions

Although the PDE app provides a convenient working environment, there are situations
where the flexibility of using the command-line functions is needed. These include:

• 3-D geometry
• Geometrical shapes other than straight lines, circular arcs, and elliptical arcs
• Nonstandard boundary conditions
• Complicated PDE or boundary condition coefficients
• More than two dependent variables in the system case
• Nonlocal solution constraints
• Special solution data processing and presentation itemize

The PDE app can still be a valuable aid in some of the situations presented previously, if
part of the modeling is done using the PDE app and then made available for command-
line use through the extensive data export facilities of the PDE app.

Data Structures in Partial Differential Equation Toolbox

The process of defining your problem and solving it is reflected in the design of the PDE
app. A number of data structures define different aspects of the problem, and the various
processing stages produce new data structures out of old ones. See the following figure.
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The rectangles are functions, and ellipses are data represented by matrices or files.
Arrows indicate data necessary for the functions.

As there is a definite direction in this diagram, you can cut into it by presenting the
needed data sets, and then continue downward. In the following sections, we give
pointers to descriptions of the precise formats of the various data structures and files.
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Constructive Solid Geometry Model

A Constructive Solid Geometry (CSG) model is specified by a Geometry Description
matrix, a set formula, and a Name Space matrix. For a description of these data
structures, see the reference page for decsg. At this level, the problem geometry is
defined by overlapping solid objects. These can be created by drawing the CSG model in
the PDE app and then exporting the data using the Export Geometry Description,
Set Formula, Labels  option from the Draw menu.

Decomposed Geometry

A decomposed geometry is specified by either a Decomposed Geometry matrix, or by
a Geometry file. Here, the geometry is described as a set of disjoint minimal regions
bounded by boundary segments and border segments. A Decomposed Geometry matrix
can be created from a CSG model by using the function decsg. It can also be exported
from the PDE app by selecting the Export Decomposed Geometry, Boundary
Cond's option from the Boundary menu. A Geometry file equivalent to a given
Decomposed Geometry matrix can be created using the wgeom function. A decomposed
geometry can be visualized with the pdegplot function. For descriptions of the data
structures of the Decomposed Geometry matrix and Geometry file, see the reference page
for decsg and “2-D Geometry”.

Boundary Conditions

These are specified by either a Boundary Condition matrix, or a Boundary file. Boundary
conditions are given as functions on boundary segments. A Boundary Condition matrix
can be exported from the PDE app by selecting the Export Decomposed Geometry,
Boundary Cond's option from the Boundary menu. For a description of the data
structures of the Boundary Condition matrix and Boundary file, see the reference pages
for assemb and see “Boundary Conditions”.

Equation Coefficients

The PDE is specified by either a Coefficient matrix or a Coefficient file for each of
the PDE coefficients c, a, f, and d. The coefficients are functions on the subdomains.
Coefficients can be exported from the PDE app by selecting the Export PDE
Coefficient option from the PDE menu. For the details on the equation coefficient data
structures, see the reference page for assempde, and see “PDE Coefficients”.

Mesh

A triangular mesh is described by the mesh data which consists of a Point matrix, an
Edge matrix, and a Triangle matrix. In the mesh, minimal regions are triangulated into
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subdomains, and border segments and boundary segments are broken up into edges.
Mesh data is created from a decomposed geometry by the function initmesh and can be
altered by the functions refinemesh and jigglemesh. The Export Mesh option from
the Mesh menu provides another way of creating mesh data. The adaptmesh function
creates mesh data as part of the solution process. The mesh may be plotted with the
pdemesh function. For details on the mesh data representation, see the reference page
for initmesh and see “Mesh Data” on page 2-161.

Solution

The solution of a PDE problem is represented by the solution vector. A solution gives
the value at each mesh point of each dependent variable, perhaps at several points in
time, or connected with different eigenvalues. Solution vectors are produced from the
mesh, the boundary conditions, and the equation coefficients by assempde, pdenonlin,
adaptmesh, parabolic, hyperbolic, and pdeeig. The Export Solution option from
the Solve menu exports solutions to the workspace. Since the meaning of a solution
vector is dependent on its corresponding mesh data, they are always used together
when a solution is presented. For details on solution vectors, see the reference page for
assempde.

Post Processing and Presentation

Given a solution/mesh pair, a variety of tools is provided for the visualization and
processing of the data. pdeintrp and pdeprtni can be used to interpolate between
functions defined at triangle nodes and functions defined at triangle midpoints.
tri2grid interpolates a functions from a triangular mesh to a rectangular grid.
Use pdeInterpolant and evaluate for more general interpolation. pdegrad and
pdecgrad compute gradients of the solution. pdeplot has a large number of options for
plotting the solution. pdecont and pdesurf are convenient shorthands for pdeplot.

Tips for Solving PDEs Programmatically

Use the export facilities of the PDE app as much as you can. They provide data
structures with the correct syntax, and these are good starting points that you can
modify to suit your needs.

Working with the system matrices and vectors produced by assema and assemb can
sometimes be valuable. When solving the same equation for different loads or boundary
conditions, it pays to assemble the stiffness matrix only once. Point loads on a particular
node can be implemented by adding the load to the corresponding row in the right side
vector. A nonlocal constraint can be incorporated into the H and R matrices.
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An example of a handwritten Coefficient file is circlef.m, which produces a point load.
You can find the full example in pdedemo7 and on the assempde reference page.

The routines for adaptive mesh generation and solution are powerful but can lead to
dense meshes and thus long computation times. Setting the Ngen parameter to one
limits you to a single refinement step. This step can then be repeated to show the
progress of the refinement. The Maxt parameter helps you stop before the adaptive solver
generates too many triangles. An example of a handwritten triangle selection function
is circlepick, used in pdedemo7. Remember that you always need a decomposed
geometry with adaptmesh.

Deformed meshes are easily plotted by adding offsets to the Point matrix p. Assuming
two variables stored in the solution vector u:

np = size(p,2); 

pdemesh(p+scale*[u(1:np) u(np+1:np+np)]',e,t)

The time evolution of eigenmodes is obtained by, e.g.,

u1 = u(:,mode)*cos(sqrt(l(mode))*tlist); % hyperbolic 

for positive eigenvalues in hyperbolic problems, or

u1 = u(:,mode)*exp(-l(mode)*tlist); % parabolic

in parabolic problems. This makes nice animations, perhaps together with deformed
mesh plots.

../examples/poisson-s-equation-with-point-source-and-adaptive-mesh-refinement.html
../examples/poisson-s-equation-with-point-source-and-adaptive-mesh-refinement.html
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Solve Poisson's Equation on a Grid

While the general strategy of Partial Differential Equation Toolbox software is to use the
MATLAB built-in solvers for sparse systems, there are situations where faster solution
algorithms are available. One such example is found when solving Poisson's equation
–Δu = f in Ω

with Dirichlet boundary conditions, where Ω is a rectangle.

For the fast solution algorithms to work, the mesh on the rectangle must be a regular
mesh. In this context it means that the first side of the rectangle is divided into N1
segments of length h1, the second into N2 segments of length h2, and (N1 + 1) by (N2 + 1)
points are introduced on the regular grid thus defined. The triangles are all congruent
with sides h1, h2 and a right angle in between.

The Dirichlet boundary conditions are eliminated in the usual way, and the resulting
problem for the interior nodes is Kv = F. If the interior nodes are numbered from left to
right, and then from bottom to top, the K matrix is block tridiagonal. The N2 – 1 diagonal
blocks, here called T, are themselves tridiagonal (N1 – 1) by (N1 – 1) matrices, with
2(h1/h2 + h2/h1) on the diagonal and –h2/h1 on the subdiagonals. The subdiagonal blocks,
here called I, are –h1/h2 times the unit N1 – 1 matrix.

The key to the solution of the problem Kv = F is that the problem Tw = f is possible to
solve using the discrete sine transform. Let S be the (N1 – 1) by (N1 – 1) matrix with Sij=
sin(πij/N1). Then S–1TS = Λ, where Λ is a diagonal matrix with diagonal entries 2(h1/h2

+ h2/h1) – 2h2/h1 cos(πi/N1). w = SΛ–1S–1 f, but multiplying with S is nothing more than
taking the discrete sine transform, and multiplying with S–1 is the same as taking the
inverse discrete sine transform. The discrete sine transform can be efficiently calculated
using the fast Fourier transform on a sequence of length 2N1.

Solving Tw = f using the discrete sine transform would not be an advantage in itself,
since the system is tridiagonal and should be solved as such. However, for the full system
Ky = F, a transformation of the blocks in K turns it into N1 – 1 decoupled tridiagonal
systems of size N2 – 1. Thus, a solution algorithm would look like

1 Divide F into N2 – 1 blocks of length N1 – 1, and perform an inverse discrete sine
transform on each block.

2 Reorder the elements and solve N1 – 1 tridiagonal systems of size N2 – 1, with
2(h1/h2 + h2/h1) – 2h2/h1 cos(πi/N1) on the diagonal, and –h1/h2 on the subdiagonals.



 Solve Poisson's Equation on a Grid

3-125

3 Reverse the reordering, and perform N2 – 1 discrete sine transforms on the blocks of
length N1 – 1.

When using a fast solver such as this one, time and memory are also saved since the
matrix K in fact never has to be assembled. A drawback is that since the mesh has to be
regular, it is impossible to do adaptive mesh refinement.

The fast elliptic solver for Poisson's equation is implemented in poisolv. The discrete
sine transform and the inverse discrete sine transform are computed by dst and idst,
respectively.
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Plot 3-D Solutions
In this section...

“Types of 3-D Solution Plots” on page 3-126
“Surface Plot” on page 3-126
“2-D Slices Through 3-D Geometry” on page 3-130
“Contour Slices of 3-D Geometry” on page 3-135
“Plots of Gradients and Streamlines” on page 3-142

Types of 3-D Solution Plots

There are several types of plots for solutions when you have 3-D geometry.

• Surface plot — Sometimes you want to examine the solution on the surface of the
geometry. For example, in a stress or strain calculation, the most interesting data can
appear on the geometry surface. For an example, see “Surface Plot” on page 3-126.

For a colored surface plot of a scalar solution, set the pdeplot3D colormapdata to
the solution u:

pdeplot3D(model,'colormapdata',u);

• Plot on a 2-D slice — To examine the solution on the interior of the geometry, define
a 2-D grid that intersects the geometry, and interpolate the solution onto the grid.
For examples, see “2-D Slices Through 3-D Geometry” on page 3-130 and “Contour
Slices of 3-D Geometry” on page 3-135. While these two examples show planar grid
slices, you can also slice on a curved grid.

• Streamline or quiver plots — Plot the gradient of the solution as streamlines or a
quiver. For 3-D, use interpolation and finite differences to approximate gradients. See
“Plots of Gradients and Streamlines” on page 3-142.

• You can use any MATLAB plotting command to create 3-D plots. See “Techniques for
Visualizing Scalar Volume Data”, “Visualizing Vector Volume Data”, and “Graphics”.

For other plot types, see the pdeplot3D reference page.

Surface Plot

This example shows how to obtain a surface plot of a solution with 3-D geometry and N >
1.
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Import a tetrahedral geometry and view its faces.

model = createpde(2);

importGeometry(model,'Tetrahedron.stl');

hc = pdegplot(model,'FaceLabels','on');

hc(1).FaceAlpha = 0.5;

view(-40,24)

Create an N = 2 problem with zero Dirichlet boundary conditions on face 4.

applyBoundaryCondition(model,'Face',4,'u',[0,0]);

Create coefficients for the problem, where f = [1;10] and c is a symmetric matrix in 6N
form.
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f = [1;10];

a = 0;

c = [2;0;4;1;3;8;1;0;2;1;2;4];

Create a mesh for the solution.

generateMesh(model);

Solve the problem.

u = assempde(model,c,a,f);

Reshape the solution from one column to two columns so that you can plot the
components separately.

u = reshape(u,[],2);

Plot the two components of the solution.

pdeplot3D(model,'colormapdata',u(:,1));

view(-175,4)

title('u(1)')

figure

pdeplot3D(model,'colormapdata',u(:,2));

view(-175,4)

title('u(2)')
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2-D Slices Through 3-D Geometry

This example shows how to obtain plots from 2-D slices through a 3-D geometry.

The problem is

∂

∂
=-

u

t
u fD

on a 3-D slab with dimensions 10-by-10-by-1, where u = 0 at time t = 0, boundary
conditions are Dirichlet, and
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f x y z y z, , .( ) = + +1 10
2

Set Up and Solve the PDE

Define a function for the nonlinear f coefficient in the syntax as given in “Specify 3-D
PDE Coefficients in Function Form” on page 2-70.

function bcMatrix = myfffun(region,state)

bcMatrix = 1+10*region.z.^2+region.y;

Import the geometry and examine the face labels.

model = createpde;

g = importGeometry(model,'Plate10x10x1.stl');

hc = pdegplot(g,'FaceLabels','on');

hc(1).FaceAlpha = 0.5;
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The faces are numbered 1 through 6.

Create the coefficients and boundary conditions.

c = 1;

a = 0;

d = 1;

f = @myfffun;

applyBoundaryCondition(model,'Face',1:6,'u',0);

Create a mesh with sides no longer than 0.3. Set times from 0 through 0.2.

generateMesh(model,'Hmax',0.3);

tlist = 0:0.02:0.2;
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Solve the PDE.

u = parabolic(0,tlist,model,c,a,f,d);

57 successful steps

0 failed attempts

116 function evaluations

1 partial derivatives

13 LU decompositions

115 solutions of linear systems

Plot Slices Through the Solution

Set up an interpolant so that you can evaluate the solution at nonmesh points.

[p,~,t] = meshToPet(model.Mesh);

F = pdeInterpolant(p,t,u);

Create a grid of (x, y, z) points, where x = 5, y ranges from 0 through 10, and z ranges
from 0 through 1. Interpolate the solution to these grid points.

yy = 0:0.5:10;

zz = 0:0.25:1;

[YY,ZZ] = meshgrid(yy,zz);

XX = 5*ones(size(YY));

uintrp = evaluate(F,XX,YY,ZZ);

The solution matrix uintrp has 11 columns, one for each time in tlist. Take the
interpolated solution for the second column, which corresponds to time 0.02.

usol = uintrp(:,2);

The elements of usol come from interpolating the solution to the XX, YY, and ZZ
matrices, which are each 5-by-21, corresponding to z-by-y variables. Reshape usol to
the same 5-by-21 size, and make a surface plot of the solution. Also make surface plots
corresponding to times 0.06, 0.10, and 0.20.

figure

usol = reshape(usol,5,[]);

subplot(2,2,1)

surf(usol)

title('t = 0.02')

zlim([0,1.5])

xlim([1,21])

ylim([1,5])
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usol = uintrp(:,4);

usol = reshape(usol,5,[]);

subplot(2,2,2)

surf(usol)

title('t = 0.06')

zlim([0,1.5])

xlim([1,21])

ylim([1,5])

usol = uintrp(:,6);

usol = reshape(usol,5,[]);

subplot(2,2,3)

surf(usol)

title('t = 0.10')

zlim([0,1.5])

xlim([1,21])

ylim([1,5])

usol = uintrp(:,11);

usol = reshape(usol,5,[]);

subplot(2,2,4)

surf(usol)

title('t = 0.20')

zlim([0,1.5])

xlim([1,21])

ylim([1,5])
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Contour Slices of 3-D Geometry

This example shows how to create contour slices in various directions through a solution
in 3-D geometry.

Set Up and Solve the PDE

The problem is to solve Poisson's equation with zero Dirichlet boundary conditions for a
complicated geometry. Poisson's equation is

-— — =· .u f
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Partial Differential Equation Toolbox solves equations in the form

-— ◊ —( ) + =c u au f .

So you can represent the problem by setting c = 1 and a = 0. Arbitrarily set f = 10.

c = 1;

a = 0;

f = 10;

Import the 'ForearmLink.stl' file and view the geometry.

N = 1;

model = createpde(N);

importGeometry(model,'ForearmLink.stl');

h = pdegplot(model);

h(1).FaceAlpha = 0.5;

view(-42,24)
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Create zero Dirichlet boundary conditions on all faces.

applyBoundaryCondition(model,'Face',1:model.Geometry.NumFaces,'u',0);

Create a mesh and solve the PDE.

generateMesh(model);

u = assempde(model,c,a,f);

Plot the Solution as Contour Slices

Because the boundary conditions are u = 0 on all faces, the solution u is nonzero only in
the interior. To examine the interior, take a rectangular grid that covers the geometry
with a spacing of one unit in each coordinate direction.
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[p,~,t] = meshToPet(model.Mesh);

x1 = min(p(1,:));

x2 = max(p(1,:));

y1 = min(p(2,:));

y2 = max(p(2,:));

z1 = min(p(3,:));

z2 = max(p(3,:));

[X,Y,Z] = meshgrid(x1:x2,y1:y2,z1:z2);

Construct an interpolant for the solution and evaluate it on every grid point.

F = pdeInterpolant(p,t,u);

V = evaluate(F,X(:),Y(:),Z(:));

V = reshape(V,size(X));

Plot contour slices for various values of z.

figure

colormap jet

contourslice(X,Y,Z,V,[],[],0:5:60)

xlabel('x')

ylabel('y')

zlabel('z')

colorbar

view(-11,14)

axis equal
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Plot contour slices for various values of y.

figure

colormap jet

contourslice(X,Y,Z,V,[],1:6:31,[])

xlabel('x')

ylabel('y')

zlabel('z')

colorbar

view(-62,34)

axis equal
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Save Memory by Evaluating As Needed

For large problems you can run out of memory when creating a fine 3-D grid.
Furthermore, it can be time-consuming to evaluate the solution on a full grid. To save
memory and time, evaluate only at the points you plot. You can also use this technique to
interpolate to tilted grids, or to other surfaces.

For example, interpolate the solution to a grid on the tilted plane 0 ≤  x ≤  135, 0 ≤  y ≤
 35, and z =  x/10 + y/2. Plot both contours and colored surface data. Use a fine grid, with
spacing 0.2.

[X,Y] = meshgrid(0:0.2:135,0:0.2:35);

Z = X(:)/10 + Y(:)/2;

V = evaluate(F,X(:),Y(:),Z);
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V = reshape(V,size(X));

figure

subplot(2,1,1)

contour(X,Y,V);

axis equal

title('Contour Plot on Tilted Plane')

xlabel('x')

ylabel('y')

colorbar

subplot(2,1,2)

surf(X,Y,V,'LineStyle','none');

axis equal

view(0,90)

title('Colored Plot on Tilted Plane')

xlabel('x')

ylabel('y')

colorbar
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Plots of Gradients and Streamlines

This example shows how to calculate the approximate gradients of a solution, and how to
use those gradients in a quiver plot or streamline plot.

The problem is the calculation of the mean exit time of a Brownian particle from a
region that contains absorbing (escape) boundaries and reflecting boundaries. For more
information, see Narrow escape problem. The PDE is Poisson's equation with constant
coefficients. The geometry is a simple rectangular solid. The solution u(x,y,z) represents
the mean time it takes a particle starting at position (x,y,z) to exit the region.

http://en.wikipedia.org/wiki/Narrow_escape_problem
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Import and View the Geometry

model = createpde(1);

importGeometry(model,'Block.stl');

handl = pdegplot(model,'FaceLabels','on');

view(-42,24)

handl(1).FaceAlpha = 0.5;

Set Boundary Conditions

Set faces 1, 2, and 5 to be the places where the particle can escape. On these faces, the
solution u = 0. Keep the default reflecting boundary conditions on faces 2, 3, and 6.

applyBoundaryCondition(model,'Face',[1,2,5],'u',0);
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Create Mesh and PDE Coefficients

The PDE is

- = -— — =Du u· .2

In Partial Differential Equation Toolbox syntax,

-— ◊ —( ) + =c u au f .

This equation translates to coefficients c = 1, a = 0, and f = 2. Enter the coefficients.

c = 1;

a = 0;

f = 2;

Initialize the mesh and solve the PDE.

generateMesh(model);

u = assempde(model,c,a,f);

Examine the Solution in a Contour Slice Plot

Create an interpolant.

[p,~,t] = meshToPet(model.Mesh);

F = pdeInterpolant(p,t,u);

Create a grid and interpolate the solution to the grid.

x1 = min(p(1,:));

x2 = max(p(1,:));

y1 = min(p(2,:));

y2 = max(p(2,:));

z1 = min(p(3,:));

z2 = max(p(3,:));

[X,Y,Z] = meshgrid(x1:x2,y1:y2,z1:z2);

V = evaluate(F,X(:),Y(:),Z(:));

V = reshape(V,size(X));

Create a contour slice plot for five fixed values of the y coordinate.
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figure;

colormap jet

contourslice(X,Y,Z,V,[],y1:4:y2-1,[])

xlabel('x');

ylabel('y');

zlabel('z')

xlim([0,100])

ylim([0,20])

zlim([0,50])

axis equal

view(-50,22)

colorbar

The particle has the largest mean exit time near the point (x,y,z) = (100,0,0).
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Use Gradients for Quiver and Streamline Plots

Examine the solution in more detail by creating approximations to the gradient of the
solution by finite differences. Use the interpolant to enable these calculations.

Evaluate the solution on a rather mesh.

[x3,y3,z3] = meshgrid(1:9:99,1:3:20,1:6:50);

originalsize = size(x3);

x3 = x3(:);

y3 = y3(:);

z3 = z3(:);

V3 = evaluate(F,x3,y3,z3);

Approximate the gradients by adding 0.1 to each coordinate, evaluating the solution, and
subtracting the original value.

gx = 10*(evaluate(F,x3+0.1,y3,z3)- V3);

gy = 10*(evaluate(F,x3,y3+0.1,z3)- V3);

gz = 10*(evaluate(F,x3,y3,z3+0.1)- V3);

Plot the gradient vectors.

figure

quiver3(x3,y3,z3,gx,gy,gz)

axis equal

xlabel 'x'

ylabel 'y'

zlabel 'z'

title('Quiver Plot of Estimated Gradient of Solution')
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Plot the streamlines of the approximate gradient. First reshape the gradient back to the
original mesh size. Start the streamlines from a sparser set of initial points.

hold on

[sx,sy,sz] = meshgrid([1,46],1:6:20,1:12:50);

x3 = reshape(x3,originalsize);

y3 = reshape(y3,originalsize);

z3 = reshape(z3,originalsize);

gx = reshape(gx,originalsize);

gy = reshape(gy,originalsize);

gz = reshape(gz,originalsize);

streamline(x3,y3,z3,gx,gy,gz,sx,sy,sz)

title('Quiver Plot with Streamlines')

hold off
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The streamlines show that small values of y and z give larger mean exit times. They
also show that the x-coordinate matters has a significant effect on u when x is small, but
when x is greater than 40, the larger values have little effect on u. Similarly, when z is
less than 20, its values have little effect on u.

Related Examples
• “Solve Problems Using PDEModel Objects” on page 2-11
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PDE App

You open the PDE app by entering pdetool at the command line. The main components
of the PDE app are the menus, the dialog boxes, and the toolbar.

• “PDE App Menus” on page 4-2
• “File Menu” on page 4-3
• “Edit Menu” on page 4-6
• “Options Menu” on page 4-8
• “Draw Menu” on page 4-12
• “Boundary Menu” on page 4-14
• “PDE Menu” on page 4-18
• “Mesh Menu” on page 4-20
• “Solve Menu” on page 4-24
• “Plot Menu” on page 4-30
• “Window Menu” on page 4-36
• “Help Menu” on page 4-37



4 PDE App

4-2

PDE App Menus

PDE app menus let you perform the following operations:

• File menu. From the File menu you can Open and Save model files that contain
a command sequence that reproduces your modeling session. You can also print the
current graphics and exit the PDE app.

• Edit menu. From the Edit menu you can cut, clear, copy, and paste the solid objects.
There is also a Select All option.

• Options menu. The Options menu contains options such as toggling the axis grid,
a “snap-to-grid” feature, and zoom. You can also adjust the axis limits and the grid
spacing, select the application mode, and refresh the PDE app.

• Draw menu. From the Draw menu you can select the basic solid objects such as
circles and polygons. You can then draw objects of the selected type using the mouse.
From the Draw menu you can also rotate the solid objects and export the geometry to
the MATLAB main workspace.

• Boundary menu. From the Boundary menu you access a dialog box where you
define the boundary conditions. Additionally, you can label edges and subdomains,
remove borders between subdomains, and export the decomposed geometry and the
boundary conditions to the workspace.

• PDE menu. The PDE menu provides a dialog box for specifying the PDE, and there
are menu options for labeling subdomains and exporting PDE coefficients to the
workspace.

• Mesh menu. From the Mesh menu you create and modify the triangular mesh. You
can initialize, refine, and jiggle the mesh, undo previous mesh changes, label nodes
and triangles, display the mesh quality, and export the mesh to the workspace.

• Solve menu. From the Solve menu you solve the PDE. You can also open a dialog
box where you can adjust the solve parameters, and you can export the solution to the
workspace.

• Plot menu. From the Plot menu you can plot a solution property. A dialog box
lets you select which property to plot, which plot style to use and several other plot
parameters. If you have recorded a movie (animation) of the solution, you can export
it to the workspace.

• Window menu. The Window menu lets you select any currently open MATLAB
figure window. The selected window is brought to the front.

• Help menu. The Help menu provides a brief help window.
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File Menu

“New” on page
4-3

Create a new (empty) Constructive Solid Geometry (CSG) model.

“Open” on page
4-3

Load a model file from disk.

Save Save the PDE app session to a model file.
“Save As” on page
4-4

Save the PDE app session to a new model file.

“Export Image” on
page 4-4

Save the current figure in one of a variety of image formats.

“Print” on page
4-5

Print a hardcopy of a figure.

Exit Exit the PDE app.

New

New deletes the current CSG model and creates a new, empty model called “Untitled.”

Open

Open displays a dialog box with a list of existing files from which you can select the file
that you want to load. You can list the contents of a different folder by changing the path
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in the Selection text box. You can use the scroll bar to display more filenames. You can
select a file by double-clicking the filename or by clicking the filename and then clicking
the Done button. When you select a file, the CSG model that is stored in the model file
is loaded into the workspace and displayed. Also, the equation, the boundary conditions,
and information about the mesh and the solution are loaded if present, and the modeling
and solution process continues to the same status as when you saved the file.

Save As

Save As displays a dialog box in which you can specify the name of the file in which to
save the CSG model and other information regarding the PDE app session. You can also
change the folder in which it is saved. If the filename is given without a .m extension, .m
is appended automatically.

The PDE app session is stored in a model file, which contains a sequence of drawing
commands and commands to recreate the modeling environment (axes scaling, grid, etc.).
If you have already defined boundary conditions, PDE coefficients, created a triangular
mesh, and solved the PDE, further commands to recreate the modeling and solution of
the PDE problem are also included in the model file. The PDE app can be started from
the command line by entering the name of a model file. The model in the file is then
directly loaded into the PDE app.

Export Image

Save the current figure as a file in your choice of formats. Available formats include:

• Bitmap (.bmp)
• EPS (.eps)
• JPEG (.jpg)
• Portable Document Format (.pdf)
• Portable Network Graphics (.png)
• TIFF (.tif)
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Print

Print displays a dialog box for printing a hardcopy of a figure. Only the main part of
the figure is printed, not the upper and lower menu and information parts. In the dialog
box, you can enter any device option that is available for the MATLAB print command.
The default device option is -dps (PostScript® for black and white printers). The paper
orientation can be set to portrait, landscape, or tall, and you can print to a printer
or to file.
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Edit Menu

Undo Undo the last line when drawing a polygon.
Cut Move the selected solid objects to the Clipboard.
Copy Copy the selected objects to the Clipboard, leaving them intact in their

original location.
“Paste” on page
4-7

Copy the contents of the Clipboard to the current CSG model.

Clear Delete the selected objects.
Select All Select all solid objects in the current CSG model. Also, select all outer

boundaries or select all subdomains.
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Paste

Paste displays a dialog box for pasting the contents of the Clipboard on to the current
CSG model. The Clipboard contents can be repeatedly pasted adding a specified x- and y-
axis displacement to the positions of the Clipboard objects.

Using the default values—zero displacement and one repetition—the Clipboard contents
is inserted at its original position.
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Options Menu

Grid Turn grid on/off.
“Grid Spacing” on page
4-9

Adjust the grid spacing.

Snap Turn the “snap-to-grid” feature on/off.
“Axes Limits” on page
4-10

Change the scaling of the drawing axes.

Axis Equal Turn the “axis equal” feature on/off.
Turn off Toolbar Help Turn off help texts for the toolbar buttons.
Zoom Turn zoom feature on/off.
Application Select application mode.
Refresh Redisplay all graphical objects in the PDE app.
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Grid Spacing

In the Grid Spacing dialog box, you can adjust the x-axis and y-axis grid spacing. By
default, the MATLAB automatic linear grid spacing is used. If you turn off the Auto
check box, the edit fields for linear spacing and extra ticks are enabled. For example, the
default linear spacing -1.5:0.5:1.5 can be changed to -1.5:0.2:1.5. In addition,
you can add extra ticks so that the grid can be customized to aid in drawing the desired
2-D domain. Extra tick entries can be separated using spaces, commas, semicolons, or
brackets.

Examples:

pi

2/3, 0.78, 1.1

-0.123; pi/4

Clicking the Apply button applies the entered grid spacing; clicking the Done button
ends the Grid Spacing dialog.
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Axes Limits

In the Axes Limits dialog box, the range of the x-axis and the y-axis can be adjusted. The
axis range should be entered as a 1-by-2 MATLAB vector such as [-10 10]. If you select
the Auto check box, automatic scaling of the axis is used.

Clicking the Apply button applies the entered axis ranges; clicking the Close button
ends the Axes Limits dialog.

Application
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From the Application submenu, you can select from 10 available application modes. The
application modes can also be selected using the pop-up menu in the upper right corner of
the PDE app.

The available application modes are:

• Generic Scalar (the default mode)
• Generic System
• Structural Mechanics — Plane Stress
• Structural Mechanics — Plane Strain
• Electrostatics
• Magnetostatics
• AC Power Electromagnetics
• Conductive Media DC
• Heat Transfer
• Diffusion
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Draw Menu

Draw Mode Enter draw mode.
Rectangle/square Draw a rectangle/square starting at a corner.

Using the left mouse button, click-and-drag to
create a rectangle. Using the right mouse button
(or Ctrl+click), click-and-drag to create a square.

Rectangle/square (centered) Draw a rectangle/square starting at the center.
Using the left mouse button, click-and-drag to
create a rectangle. Using the right mouse button
(or Ctrl+click), click-and-drag to create a square.

Ellipse/circle Draw an ellipse/circle starting at the perimeter.
Using the left mouse button, click-and-drag to
create an ellipse. Using the right mouse button
(or Ctrl+click), click-and-drag to create a circle.

Ellipse/circle (centered) Draw an ellipse/circle starting at the center.
Using the left mouse button, click-and-drag to
create an ellipse. Using the right mouse button
(or Ctrl+click), click-and-drag to create a circle.

Polygon Draw a polygon. You can close the polygon by
pressing the right mouse button. Clicking at the
starting vertex also closes the polygon.

“Rotate” on page 4-13 Rotate selected objects.
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Export Geometry Description, Set
Formula, Labels

Export the Geometry Description matrix gd,
the set formula string sf, and the Name Space
matrix ns (labels) to the main workspace.

Rotate

Rotate opens a dialog box where you can enter the angle of rotation in degrees. The
selected objects are then rotated by the number of degrees that you specify. The rotation
is done counter clockwise for positive rotation angles. By default, the rotation center
is the center-of-mass of the selected objects. If the Use center-of-mass option is not
selected, you can enter a rotation center (xc,yc) as a 1-by-2 MATLAB vector such as
[-0.4 0.3].
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Boundary Menu

Boundary Mode Enter the boundary mode.
Specify Boundary Conditions Specify boundary conditions for the selected

boundaries. If no boundaries are selected,
the entered boundary condition applies to all
boundaries.

Show Edge Labels Toggle the labeling of the edges (outer
boundaries and subdomain borders) on/off. The
edges are labeled using the column number in
the Decomposed Geometry matrix.

Show Subdomain Labels Toggle the labeling of the subdomains on/
off. The subdomains are labeled using the
subdomain numbering in the Decomposed
Geometry matrix.

Remove Subdomain Border Remove selected subdomain borders.
Remove All Subdomain Borders Remove all subdomain borders.
Export Decomposed Geometry,
Boundary Cond's

Export the Decomposed Geometry matrix g
and the Boundary Condition matrix b to the
main workspace.
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Specify Boundary Conditions in the PDE App

Specify Boundary Conditions opens a dialog box where you can specify the boundary
condition for the selected boundary segments. There are three different condition types:

• Generalized Neumann conditions, where the boundary condition is determined by the
coefficients q and g according to the following equation:

r

n c qu gu· .—( ) + =

In the system cases, q is a 2-by-2 matrix and g is a 2-by-1 vector.
• Dirichlet conditions: u is specified on the boundary. The boundary condition equation

is hu = r, where h is a weight factor that can be applied (normally 1).

In the system cases, h is a 2-by-2 matrix and r is a 2-by-1 vector.
• Mixed boundary conditions (system cases only), which is a mix of Dirichlet and

Neumann conditions. q is a 2-by-2 matrix, g is a 2-by-1 vector, h is a 1-by-2 vector,
and r is a scalar.

The following figure shows the dialog box for the generic system PDE (Options >
Application > Generic System).



4 PDE App

4-16

For boundary condition entries you can use the following variables in a valid MATLAB
expression:

• The 2-D coordinates x and y.
• A boundary segment parameter s, proportional to arc length. s is 0 at the start of the

boundary segment and increases to 1 along the boundary segment in the direction
indicated by the arrow.

• The outward normal vector components nx and ny. If you need the tangential vector,
it can be expressed using nx and ny since tx = –ny and ty = nx.

• The solution u.
• The time t.

Note If the boundary condition is a function of the solution u, you must use the nonlinear
solver. If the boundary condition is a function of the time t, you must choose a parabolic
or hyperbolic PDE.

Examples: (100-80*s).*nx, and cos(x.^2)
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In the nongeneric application modes, the Description column contains descriptions of
the physical interpretation of the boundary condition parameters.
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PDE Menu

PDE Mode Enter the partial differential equation mode.
Show Subdomain Labels Toggle the labeling of the subdomains on/off. The

subdomains are labeled using the subdomain
numbering in the decomposed geometry matrix.

“PDE Specification in the PDE
App” on page 4-18

Open the dialog box for specifying PDE coefficients
and types.

Export PDE Coefficients Export current PDE coefficients to the main
workspace. The resulting workspace variables are
strings.

PDE Specification in the PDE App
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PDE Specification opens a dialog box where you enter the type of partial differential
equation and the applicable parameters. The dimension of the parameters depends on
the dimension of the PDE. The following description applies to scalar PDEs. If you select
a nongeneric application mode, application-specific PDEs and parameters replace the
standard PDE coefficients.

Each of the coefficients c, a, f, and d can be given as a valid MATLAB expression
for computing coefficient values at the triangle centers of mass. These variables are
available:

• x and y — The x- and y-coordinates
• u — The solution
• sd — The subdomain number
• ux and uy — The x and y derivatives of the solution
• t — The time

For details, see “Coefficients for Scalar PDEs in PDE App” on page 2-64 and “Systems in
the PDE App” on page 2-88.
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Mesh Menu

Mesh Mode Enter mesh mode.
Initialize Mesh Build and display an initial triangular mesh.
Refine Mesh Uniformly refine the current triangular mesh.
Jiggle Mesh Jiggle the mesh.
Undo Mesh Change Undo the last mesh change. All mesh generations are

saved, so repeated Undo Mesh Change eventually
brings you back to the initial mesh.

Display Triangle Quality Display a plot of the triangular mesh where the
individual triangles are colored according to their
quality. The quality measure is a number between 0
and 1, where triangles with a quality measure greater
than 0.6 are acceptable. For details on the triangle
quality measure, see pdetriq.

Show Node Labels Toggle the mesh node labels on/off. The node labels
are the column numbers in the Point matrix p.

Show Triangle Labels Toggle the mesh triangle labels on/off. The triangle
labels are the column numbers in the triangle matrix
t.
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“Parameters” on page 4-22 Open dialog box for modification of mesh generation
parameters.

Export Mesh Export Point matrix p, Edge matrix e, and Triangle
matrix t to the main workspace.
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Parameters

Parameters opens a dialog box containing mesh generation parameters. The parameters
used by the mesh initialization algorithm initmesh are:
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• Maximum edge size: Largest triangle edge length (approximately). This parameter
is optional and must be a real positive number.

• Mesh growth rate: The rate at which the mesh size increases away from small parts
of the geometry. The value must be between 1 and 2. The default value is 1.3, i.e., the
mesh size increases by 30%.

• Mesher version: Choose the geometry triangulation algorithm. R2013a is faster,
and can mesh more geometries. preR2013a gives the same mesh as previous toolbox
versions.

• Jiggle mesh: Toggles automatic jiggling of the initial mesh on/off.

The parameters used by the mesh jiggling algorithm jigglemesh are:

• Jiggle mode: Select a jiggle mode from a pop-up menu. Available modes are on,
optimize minimum, and optimize mean. on jiggles the mesh once. Using the
jiggle mode optimize minimum, the jiggling process is repeated until the minimum
triangle quality stops increasing or until the iteration limit is reached. The same
applies for the optimize mean option, but it tries to increase the mean triangle
quality.

• Number of jiggle iterations: Iteration limit for the optimize minimum and
optimize mean modes. Default: 20.

Finally, for the mesh refinement algorithm refinemesh, the Refinement method can
be regular or longest. The default refinement method is regular, which results in a
uniform mesh. The refinement method longest always refines the longest edge on each
triangle.
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Solve Menu

Solve PDE Solve the partial differential equation for the current CSG
model and triangular mesh, and plot the solution (the
automatic solution plot can be disabled).

“Parameters” on page
4-25

Open dialog box for entry of PDE solve parameters.

Export Solution Export the PDE solution vector u and, if applicable, the
computed eigenvalues l to the main workspace.
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Parameters

Elliptic Equations

Parameters opens a dialog box where you can enter the solve parameters. The set of
solve parameters differs depending on the type of PDE.
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• Elliptic PDEs. By default, no specific solve parameters are used, and the elliptic PDEs
are solved using the basic elliptic solver assempde. Optionally, the adaptive mesh
generator and solver adaptmesh can be used. For the adaptive mode, the following
parameters are available:

• Adaptive mode. Toggle the adaptive mode on/off.
• Maximum number of triangles. The maximum number of new triangles

allowed (can be set to Inf). A default value is calculated based on the current
mesh.

• Maximum number of refinements. The maximum number of successive
refinements attempted.

• Triangle selection method. There are two triangle selection methods, described
below. You can also supply your own function.

• Worst triangles. This method picks all triangles that are worse than a
fraction of the value of the worst triangle (default: 0.5). For more details, see
pdetriq.

• Relative tolerance. This method picks triangles using a relative tolerance
criterion (default: 1E-3). For more details, see pdeadgsc.

• User-defined function. Enter the name of a user-defined triangle selection
method. See pdedemo7 for an example of a user-defined triangle selection
method.

• Function parameter. The function parameter allows fine-tuning of the triangle
selection methods. For the worst triangle method (pdeadworst), it is the fraction
of the worst value that is used to determine which triangles to refine. For the
relative tolerance method, it is a tolerance parameter that controls how well the
solution fits the PDE.

• Refinement method. Can be regular or longest. See the Parameters dialog
box description in “Mesh Menu” on page 4-20.

If the problem is nonlinear, i.e., parameters in the PDE are directly dependent on the
solution u, a nonlinear solver must be used. The following parameters are used:

• Use nonlinear solver. Toggle the nonlinear solver on/off.
• Nonlinear tolerance. Tolerance parameter for the nonlinear solver.
• Initial solution. An initial guess. Can be a constant or a function of x and y given

as a MATLAB expression that can be evaluated on the nodes of the current mesh.

../examples/poisson-s-equation-with-point-source-and-adaptive-mesh-refinement.html
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Examples: 1, and exp(x.*y). Optional parameter, defaults to zero.
• Jacobian. Jacobian approximation method: fixed (the default), a fixed point

iteration, lumped, a “lumped” (diagonal) approximation, or full, the full
Jacobian.

• Norm. The type of norm used for computing the residual. Enter as energy for
an energy norm, or as a real scalar p to give the lp norm. The default is Inf, the
infinity (maximum) norm.

Note The adaptive mode and the nonlinear solver can be used together.

• Parabolic PDEs. The solve parameters for the parabolic PDEs are:

• Time. A MATLAB vector of times at which a solution to the parabolic PDE
should be generated. The relevant time span is dependent on the dynamics of
the problem.

Examples: 0:10, and logspace(-2,0,20)
• u(t0). The initial value u(t0) for the parabolic PDE problem The initial value

can be a constant or a column vector of values on the nodes of the current mesh.
• Relative tolerance. Relative tolerance parameter for the ODE solver that is

used for solving the time-dependent part of the parabolic PDE problem.
• Absolute tolerance. Absolute tolerance parameter for the ODE solver that is

used for solving the time-dependent part of the parabolic PDE problem.
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Hyperbolic Equations

• Hyperbolic PDEs. The solve parameters for the hyperbolic PDEs are:

• Time. A MATLAB vector of times at which a solution to the hyperbolic PDE
should be generated. The relevant time span is dependent on the dynamics of
the problem.

Examples: 0:10, and logspace(-2,0,20).
• u(t0). The initial value u(t0) for the hyperbolic PDE problem. The initial value

can be a constant or a column vector of values on the nodes of the current mesh.
• u'(t0). The initial value &u (t0) for the hyperbolic PDE problem. You can use the

same formats as for u(t0).
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• Relative tolerance. Relative tolerance parameter for the ODE solver that is
used for solving the time-dependent part of the hyperbolic PDE problem.

• Absolute tolerance. Absolute tolerance parameter for the ODE solver that is
used for solving the time-dependent part of the hyperbolic PDE problem.

Eigenvalue Equations

• Eigenvalue problems. For the eigenvalue PDE, the only solve parameter is the
Eigenvalue search range, a two-element vector, defining an interval on the real
axis as a search range for the eigenvalues. The left side can be -Inf.

Examples: [0 100], [-Inf 50]
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Plot Menu

Plot Solution Display a plot of the solution.
“Parameters” on page
4-30

Open dialog box for plot selection.

Export Movie If a movie has been recorded, the movie matrix M is exported to
the main workspace.

Parameters

Plot Selection Dialog Box
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Parameters opens a dialog box containing options controlling the plotting and
visualization.

The upper part of the dialog box contains four columns:

• Plot type (far left) contains a row of six different plot types, which can be used for
visualization:

• Color. Visualization of a scalar property using colored surface objects.
• Contour. Visualization of a scalar property using colored contour lines. The

contour lines can also enhance the color visualization when both plot types (Color
and Contour) are checked. The contour lines are then drawn in black.

• Arrows. Visualization of a vector property using arrows.
• Deformed mesh. Visualization of a vector property by deforming the mesh using

the vector property. The deformation is automatically scaled to 10% of the problem
domain. This plot type is primarily intended for visualizing x- and y-displacements
(u and v) for problems in structural mechanics. If no other plot type is selected, the
deformed triangular mesh is displayed.

• Height (3-D plot). Visualization of a scalar property using height (z-axis) in
a 3-D plot. 3-D plots are plotted in separate figure windows. If the Color and
Contour plot types are not used, the 3-D plot is simply a mesh plot. You can
visualize another scalar property simultaneously using Color and/or Contour,
which results in a 3-D surface or contour plot.

• Animation. Animation of time-dependent solutions to parabolic and hyperbolic
problems. If you select this option, the solution is recorded and then animated in a
separate figure window using the MATLAB movie function.

A color bar is added to the plots to map the colors in the plot to the magnitude of the
property that is represented using color or contour lines.

• Property contains four pop-up menus containing lists of properties that are available
for plotting using the corresponding plot type. From the first pop-up menu you control
the property that is visualized using color and/or contour lines. The second and third
pop-up menus contain vector valued properties for visualization using arrows and
deformed mesh, respectively. From the fourth pop-up menu, finally, you control which
scalar property to visualize using z-height in a 3-D plot. The lists of properties are
dependent on the current application mode. For the generic scalar mode, you can
select the following scalar properties:

• u. The solution itself.
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• abs(grad(u)). The absolute value of ∇u, evaluated at the center of each triangle.
• abs(c*grad(u)). The absolute value of c · ∇u, evaluated at the center of each

triangle.
• user entry. A MATLAB expression returning a vector of data defined on

the nodes or the triangles of the current triangular mesh. The solution u, its
derivatives ux and uy, the x and y components of c · ∇u, cux and cuy, and x and y
are all available in the local workspace. You enter the expression into the edit box
to the right of the Property pop-up menu in the User entry column.

Examples: u.*u, x+y

The vector property pop-up menus contain the following properties in the generic
scalar case:

• -grad(u). The negative gradient of u, –∇u.
• -c*grad(u). c times the negative gradient of u, –c · ∇u.
• user entry. A MATLAB expression [px; py] returning a 2-by-ntri matrix of

data defined on the triangles of the current triangular mesh (ntri is the number
of triangles in the current mesh). The solution u, its derivatives ux and uy, the x
and y components of c · ∇u, cux and cuy, and x and y are all available in the local
workspace. Data defined on the nodes is interpolated to triangle centers. You enter
the expression into the edit field to the right of the Property pop-up menu in the
User entry column.

Examples: [ux;uy], [x;y]

For the generic system case, the properties available for visualization using color, contour
lines, or z-height are u, v, abs(u,v), and a user entry. For visualization using arrows
or a deformed mesh, you can choose (u,v) or a user entry. For applications in structural
mechanics, u and v are the x- and y-displacements, respectively.

The variables available in the local workspace for a user entered expression are the same
for all scalar and system modes (the solution is always referred to as u and, in the system
case, v).

• User entry contains four edit fields where you can enter your own expression, if you
select the user entry property from the corresponding pop-up menu to the left of the
edit fields. If the user entry property is not selected, the corresponding edit field is
disabled.
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• Plot style contains three pop-up menus from which you can control the plot style for
the color, arrow, and height plot types respectively. The available plot styles for color
surface plots are

• Interpolated shading. A surface plot using the selected colormap and
interpolated shading, i.e., each triangular area is colored using a linear,
interpolated shading (the default).

• Flat shading. A surface plot using the selected colormap and flat shading, i.e.,
each triangular area is colored using a constant color.

You can use two different arrow plot styles:

• Proportional. The length of the arrow corresponds to the magnitude of the
property that you visualize (the default).

• Normalized. The lengths of all arrows are normalized, i.e., all arrows have the
same length. This is useful when you are interested in the direction of the vector
field. The direction is clearly visible even in areas where the magnitude of the field
is very small.

For height (3-D plots), the available plot styles are:

• Continuous. Produces a “smooth” continuous plot by interpolating data from
triangle midpoints to the mesh nodes (the default).

• Discontinuous. Produces a discontinuous plot where data and z-height are
constant on each triangle.

A total of three properties of the solution—two scalar properties and one vector field
—can be visualized simultaneously. If the Height (3-D plot) option is turned off, the
solution plot is a 2-D plot and is plotted in the main axes of the PDE app. If the Height
(3-D plot) option is used, the solution plot is a 3-D plot in a separate figure window. If
possible, the 3-D plot uses an existing figure window. If you would like to plot in a new
figure window, simply type figure at the MATLAB command line.

Additional Plot Control Options

In the middle of the dialog box are a number of additional plot control options:

• Plot in x-y grid. If you select this option, the solution is converted from the original
triangular grid to a rectangular x-y grid. This is especially useful for animations since
it speeds up the process of recording the movie frames significantly.
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• Show mesh. In the surface plots, the mesh is plotted using black color if you select
this option. By default, the mesh is hidden.

• Contour plot levels. For contour plots, the number of level curves, e.g., 15 or 20 can
be entered. Alternatively, you can enter a MATLAB vector of levels. The curves of the
contour plot are then drawn at those levels. The default is 20 contour level curves.

Examples: [0:100:1000], logspace(-1,1,30)
• Colormap. Using the Colormap pop-up menu, you can select from a number of

different colormaps: cool, gray, bone, pink, copper, hot, jet, hsv, prism, and
parula.

• Plot solution automatically. This option is normally selected. If turned off, there
will not be a display of a plot of the solution immediately upon solving the PDE. The
new solution, however, can be plotted using this dialog box.

For the parabolic and hyperbolic PDEs, the bottom right portion of the Plot Selection
dialog box contains the Time for plot parameter.

Time for plot. A pop-up menu allows you to select which of the solutions to plot by
selecting the corresponding time. By default, the last solution is plotted.

Also, the Animation plot type is enabled. In its property field you find an Options
button. If you press it, an additional dialog box appears. It contains parameters that
control the animation:
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• Animation rate (fps). For the animation, this parameter controls the speed of the
movie in frames per second (fps).

• Number of repeats. The number of times the movie is played.
• Replay movie. If you select this option, the current movie is replayed without

rerecording the movie frames. If there is no current movie, this option is disabled.

For eigenvalue problems, the bottom right part of the dialog box contains a pop-up menu
with all eigenvalues. The plotted solution is the eigenvector associated with the selected
eigenvalue. By default, the smallest eigenvalue is selected.

You can rotate the 3-D plots by clicking the plot and, while keeping the mouse button
down, moving the mouse. For guidance, a surrounding box appears. When you release
the mouse, the plot is redrawn using the new viewpoint. Initially, the solution is plotted
using -37.5 degrees horizontal rotation and 30 degrees elevation.

If you click the Plot button, the solution is plotted immediately using the current plot
setup. If there is no current solution available, the PDE is first solved. The new solution
is then plotted. The dialog box remains on the screen.

If you click the Done button, the dialog box is closed. The current setup is saved but no
additional plotting takes place.

If you click the Cancel button, the dialog box is closed. The setup remains unchanged
since the last plot.
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Window Menu

From the Window menu, you can select all currently open MATLAB figure windows.
The selected window is brought to the front.
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Help Menu

PDETool Help Open documentation to pdetool entry.
PDE Toolbox Help Open documentation to Partial Differential Equation Toolbox.
Examples Examples using the software.
About the PDE
Toolbox

Display a window with some program information.
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Elliptic Equations

The basic elliptic equation handled by the software is

-— ◊ —( ) + =c u au f ,

in Ω, where Ω is a bounded domain in two or three dimensions. c, a, f, and the unknown
solution u are complex functions defined on Ω. c can also be a 2-by-2 matrix function on
Ω. The boundary conditions specify a combination of u and its normal derivative on the
boundary:

• Dirichlet: hu = r on the boundary ∂Ω.
• Generalized Neumann: rn  · (c∇u) + qu = g on ∂Ω.
• Mixed: Only applicable to systems. A combination of Dirichlet and generalized

Neumann.
r

n  is the outward unit normal. g, q, h, and r are functions defined on ∂Ω.

Our nomenclature deviates slightly from the tradition for potential theory, where a
Neumann condition usually refers to the case q = 0 and our Neumann would be called
a mixed condition. In some contexts, the generalized Neumann boundary conditions
is also referred to as the Robin boundary conditions. In variational calculus, Dirichlet
conditions are also called essential boundary conditions and restrict the trial space.
Neumann conditions are also called natural conditions and arise as necessary conditions
for a solution. The variational form of the Partial Differential Equation Toolbox equation
with Neumann conditions is given below.

The approximate solution to the elliptic PDE is found in three steps:

1 Describe the geometry of the domain Ω and the boundary conditions. For 2-D
geometry, create geometry using the PDE app or through MATLAB files. For 3-D
geometry, import the geometry in STL file format. See “2-D Geometry”, “Create and
View 3-D Geometry” on page 2-44, and “Boundary Conditions”.

2 Build a triangular mesh on the domain Ω. The software has mesh generating and
mesh refining facilities. A mesh is described by three matrices of fixed format
that contain information about the mesh points, the boundary segments, and the
elements.

3 Discretize the PDE and the boundary conditions to obtain a linear system Ku = F.
The unknown vector u contains the values of the approximate solution at the
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mesh points, the matrix K is assembled from the coefficients c, a, h, and q and
the right-hand side F contains, essentially, averages of f around each mesh point
and contributions from g. Once the matrices K and F are assembled, you have the
entire MATLAB environment at your disposal to solve the linear system and further
process the solution.

More elaborate applications make use of the Finite Element Method (FEM) specific
information returned by the different functions of the software. Therefore we quickly
summarize the theory and technique of FEM solvers to enable advanced applications to
make full use of the computed quantities.

FEM can be summarized in the following sentence: Project the weak form of the
differential equation onto a finite-dimensional function space. The rest of this section
deals with explaining the preceding statement.

We start with the weak form of the differential equation. Without restricting the
generality, we assume generalized Neumann conditions on the whole boundary, since
Dirichlet conditions can be approximated by generalized Neumann conditions. In the
simple case of a unit matrix h, setting g = qr and then letting q → ∞ yields the Dirichlet
condition because division with a very large q cancels the normal derivative terms.
The actual implementation is different, since the preceding procedure may create
conditioning problems. The mixed boundary condition of the system case requires a more
complicated treatment, described in “Systems of PDEs” on page 5-13.

Assume that u is a solution of the differential equation. Multiply the equation with an
arbitrary test function v and integrate on Ω:

-( ) =— —( ) +Ú Ú· .c u v auv dx fv dx

W W

Integrate by parts (i.e., use Green's formula) to obtain

c fvu v auv dx n c u v ds dx— — +( ) —( )( ) - =Ú Ú Ú
∂

· · .

W WW

r

The boundary integral can be replaced by the boundary condition:

c fvu v auv dx qu g v ds dx— — +( ) - +( )( ) - =Ú Ú Ú
∂

· .

W WW
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Replace the original problem with Find u such that

c u v auv fv dx qu g v ds v— — + -( ) - +( ) "( ) - =Ú Ú
∂

· .

W W

0

This equation is called the variational, or weak, form of the differential equation.
Obviously, any solution of the differential equation is also a solution of the variational
problem. The reverse is true under some restrictions on the domain and on the coefficient
functions. The solution of the variational problem is also called the weak solution of the
differential equation.

The solution u and the test functions v belong to some function space V. The next step is
to choose an Np-dimensional subspace V VN p

Ã . Project the weak form of the differential

equation onto a finite-dimensional function space simply means requesting u and v to lie
in VN p

 rather than V. The solution of the finite dimensional problem turns out to be the

element of VN p
 that lies closest to the weak solution when measured in the energy norm.

Convergence is guaranteed if the space VN p
 tends to V as Np→∞. Since the differential

operator is linear, we demand that the variational equation is satisfied for Np test-
functions Φi ∊VN p

 that form a basis, i.e.,

c u au f dx qu g ds i Ni i i i p— — + -( ) - +( ) =( ) - =Ú Ú
∂

· , ..., .,f f f f
W W

0 1

Expand u in the same basis of VN p
 elements

u x U xj j

j

N p

( ) ( ),=
=
∑ f

1

and obtain the system of equations

c Ua dx q ds f dx gj i j i j i i

j

N

j

p

— — +( )( ) +Ê

Ë
Á

ˆ

¯
˜

= +Ú ÚÂ Ú
∂=

f f f f f f f f·

W WW1

ii pds i N

∂
Ú =
W

, , ... , . 1
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Use the following notations:

K c dxi j j i, = ( ) ◊— —Ú f f
W

(stiffness matrix)

M a dxi j j i, = Ú f f
W

(mass matrix)

Q q dsi j j i,

=
∂
Ú f f
W

F f dxi i= Ú f
W

G g dsi i=
∂
Ú f
W

and rewrite the system in the form
(K + M + Q)U = F + G.

K, M, and Q are Np-by-Np matrices, and F and G are Np-vectors. K, M, and F are
produced by assema, while Q, G are produced by assemb. When it is not necessary to
distinguish K, M, and Q or F and G, we collapse the notations to KU = F, which form the
output of assempde.

When the problem is self-adjoint and elliptic in the usual mathematical sense, the matrix
K + M + Q becomes symmetric and positive definite. Many common problems have
these characteristics, most notably those that can also be formulated as minimization
problems. For the case of a scalar equation, K, M, and Q are obviously symmetric. If c(x) ≥
δ > 0, a(x) ≥ 0 and q(x) ≥ 0 with q(x) > 0 on some part of ∂Ω, then, if U ≠ 0.

U K M Q U c u au qudx ds UT + +( ) = +( ) + > πÚ Ú
∂

2 2 2 0 0

W W

, .if 

UT(K + M + Q)U is the energy norm. There are many choices of the test-function
spaces. The software uses continuous functions that are linear on each element of a
2-D mesh, and are linear or quadratic on elements of a 3-D mesh. Piecewise linearity
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guarantees that the integrals defining the stiffness matrix K exist. Projection onto VN p

is nothing more than linear interpolation, and the evaluation of the solution inside an
element is done just in terms of the nodal values. If the mesh is uniformly refined, VN p

approximates the set of smooth functions on Ω.

A suitable basis for VN p
 in 2-D is the set of “tent” or “hat” functions ϕi. These are linear

on each element and take the value 0 at all nodes xj except for xi. For the definition of
basis functions for 3-D geometry, see “Finite Element Basis for 3-D” on page 5-10.
Requesting ϕi(xi) = 1 yields the very pleasant property

u x U x Ui j j i

j

N

i

p

( ) = ( ) =
=
Â f

1

.

That is, by solving the FEM system we obtain the nodal values of the approximate
solution. The basis function ϕi vanishes on all the elements that do not contain the node
xi. The immediate consequence is that the integrals appearing in Ki,j, Mi,j, Qi,j, Fi and Gi
only need to be computed on the elements that contain the node xi. Secondly, it means
that Ki,j andMi,j are zero unless xi and xj are vertices of the same element and thus K and
M are very sparse matrices. Their sparse structure depends on the ordering of the indices
of the mesh points.

The integrals in the FEM matrices are computed by adding the contributions from each
element to the corresponding entries (i.e., only if the corresponding mesh point is a vertex
of the element). This process is commonly called assembling, hence the name of the
function assempde.

The assembling routines scan the elements of the mesh. For each element they compute
the so-called local matrices and add their components to the correct positions in the
sparse matrices or vectors.

The discussion now specializes to triangular meshes in 2-D. The local 3-by-3 matrices
contain the integrals evaluated only on the current triangle. The coefficients are assumed
constant on the triangle and they are evaluated only in the triangle barycenter. The
integrals are computed using the midpoint rule. This approximation is optimal since it
has the same order of accuracy as the piecewise linear interpolation.

Consider a triangle given by the nodes P1, P2, and P3 as in the following figure.
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P

P

P

1

2

3

Pc

Pb

x

y
1

1

The Local Triangle P1P2P3

Note: The local 3-by-3 matrices contain the integrals evaluated only on the current
triangle. The coefficients are assumed constant on the triangle and they are evaluated
only in the triangle barycenter.

The simplest computations are for the local mass matrix m:

m a P x x a P
P P P

dxi j c i j

P P P

c i j, ,= ( ) ( ) ( ) = ( ) ( )
+(Ú f f d

D

D

1 2 3

1 2 3

12
1

area
)) ,

where Pc is the center of mass of Δ P1P2P3, i.e.,

P
P P P

c
=

+ +
1 2 3

3
.

The contribution to the right side F is just

f f P
P P P

i c= ( )
( )area D

1 2 3

3
.
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For the local stiffness matrix we have to evaluate the gradients of the basis functions
that do not vanish on P1P2P3. Since the basis functions are linear on the triangle P1P2P3,
the gradients are constants. Denote the basis functions ϕ1, ϕ2, and ϕ3 such that ϕ(Pi) = 1.
If P2 – P3 = [x1,y1]T then we have that

— =
( ) -

È

Î
Í

˘

˚
˙f

1

1 2 3

1

1

1

2area DP P P

y

x

and after integration (taking c as a constant matrix on the triangle)

k
P P P

y x c P
y

xi j j j c, , .=
( )

-ÈÎ ˘̊ ( )
-

È

Î
Í

˘

˚
˙

1

4 1 2 3

1

1area D

If two vertices of the triangle lie on the boundary ∂Ω, they contribute to the line integrals
associated to the boundary conditions. If the two boundary points are P1 and P2, then we
have

Q q P
P P

i ji j b i j, , , , ,= ( )
-

+( ) =1 2

6
1 1 2d

and

G g P
P P

ii b= ( )
-

=
1 2

2
1 2, ,

where Pb is the midpoint of P1P2.

For each triangle the vertices Pm of the local triangle correspond to the indices im of the
mesh points. The contributions of the individual triangle are added to the matrices such
that, e.g.,

K t K k m ni i i i m n
m n m n

, , , , , , , .¨ + = 1 2 3

This is done by the function assempde. The gradients and the areas of the triangles are
computed by the function pdetrg.
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The Dirichlet boundary conditions are treated in a slightly different manner. They are
eliminated from the linear system by a procedure that yields a symmetric, reduced
system. The function assempde can return matrices K, F, B, and ud such that the
solution is u = Bv + ud where Kv = F. u is an Np-vector, and if the rank of the Dirichlet
conditions is rD, then v has Np – rD components.
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Finite Element Basis for 3-D

The finite element method for 3-D geometry is similar to the 2-D method described
in “Elliptic Equations” on page 5-2. The main difference is that the elements in 3-D
geometry are tetrahedra, which means that the basis functions are different from those
in 2-D geometry.

It is convenient to map a tetrahedron to a canonical tetrahedron with a local coordinate
system (r,s,t).

r s

t

p1

p2 p3

p4

In local coordinates, the point p1 is at (0,0,0), p2 is at (1,0,0), p3 is at (0,1,0), and p4 is at
(0,0,1).

For a linear tetrahedron, the basis functions are

f

f

f

f

1

2

3

4

1= - - -

=

=

=

r s t

r

s

t.

For a quadratic tetrahedron, there are additional nodes at the edge midpoints.
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The corresponding basis functions are
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As in the 2-D case, a 3-D basis function ϕi takes the value 0 at all nodes j, except for node
i, where it takes the value 1.

See Also
FEMesh
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More About
• “Elliptic Equations” on page 5-2
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Systems of PDEs

Partial Differential Equation Toolbox software can also handle systems of N partial
differential equations over the domain Ω. We have the elliptic system

-— ◊ ƒ—( ) + =c u au f .

the parabolic system

d c au f
u

u
∂

∂
—-— ◊ ƒ( ) + =

t

,

the hyperbolic system

d
u

c u au f
∂

∂
— ◊ ƒ—( ) + =-

2

2
t

,

and the eigenvalue system

-— ◊ ƒ—( ) + =c u au dul ,

where c is an N-by-N-by-D-by-D tensor, and D is the geometry dimensions, 2 or 3.

For 2-D systems, the notation — ◊ ƒ —( )c u  represents an N-by-1 matrix with an (i,1)-
component

∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂x

c
x x

c
y y

c
x y

ci j i j i j i j, , , , , , , , , , , ,1 1 1 2 2 1 2 2
yy

u

j

N

j
Ê

Ë
Á

ˆ

¯
˜

=
Â

1

.

For 3-D systems, the notation — ◊ ƒ —( )c u  represents an N-by-1 matrix with an (i,1)-
component



5 Finite Element Method

5-14

∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

Ê

Ë
Á

ˆ

¯
˜

+

=
Â

x
c

x x
c

y x
c

z
ui j i j i j j

j

N

, , , , , , , , ,1 1 1 2 1 3

1

∂∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

Ê

Ë
Á

ˆ

¯
˜

=
Â

y
c

x y
c

y y
c

z
ui j i j i j j

j

N

, , , , , , , , ,2 1 2 2 2 3

1

++ ∂
∂

+ ∂
∂

+ ∂
∂

Ê

Ë
Á

ˆ

¯
˜

∂
∂

∂
∂

∂
∂= z z z

c
x

c
y

c
z

ui j i j i j j

j

N

, , , , , , , , ,3 1 3 2 3 3

1

ÂÂ .

The symbols a and d denote N-by-N matrices, and f denotes a column vector of length N.

The elements cijkl, aij, dij, and fi of c, a, d, and f are stored row-wise in the MATLAB
matrices c, a, d, and f. The case of identity, diagonal, and symmetric matrices are
handled as special cases. For the tensor cijkl this applies both to the indices i and j, and to
the indices k and l.

Partial Differential Equation Toolbox software does not check the ellipticity of
the problem, and it is quite possible to define a system that is not elliptic in the
mathematical sense. The preceding procedure that describes the scalar case is applied to
each component of the system, yielding a symmetric positive definite system of equations
whenever the differential system possesses these characteristics.

The boundary conditions now in general are mixed, i.e., for each point on the boundary a
combination of Dirichlet and generalized Neumann conditions,

hu r

n c qu g hu

=

ƒ( ) + = + ¢—· .m

For 2-D systems, the notation n c u· ƒ( )—  represents an N-by-1 matrix with (i,1)-
component

cos( ) cos( ) sin( ) sin(, , , , , , , , ,a a ac c c
x y x

i j i j i j1 1 1 2 2 1
∂
∂

∂
∂

∂
∂

+ + + aa) , , ,c u
y

i j

j

N

j2 2

1

∂
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Ê

Ë
Á

ˆ

¯
˜

=
Â

where the outward normal vector of the boundary is n = ( )cos( ),sin( )a a .
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For 3-D systems, the notation n c u· ƒ( )—  represents an N-by-1 matrix with (i,1)-
component

cos( ) cos( ) cos( ), , , , , , , , ,a a ac c c
x y zi j i j i j1 1 1 2 1 3
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∂
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ˆ

¯
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where the outward normal to the boundary is

n = ( ) ( ) ( )( )cos ,cos ,cos .a b g

There are M Dirichlet conditions and the h-matrix is M-by-N, M ≥ 0. The generalized
Neumann condition contains a source ¢h m , where the Lagrange multipliers μ are
computed such that the Dirichlet conditions become satisfied. In a structural mechanics
problem, this term is exactly the reaction force necessary to satisfy the kinematic
constraints described by the Dirichlet conditions.

The rest of this section details the treatment of the Dirichlet conditions and may be
skipped on a first reading.

Partial Differential Equation Toolbox software supports two implementations of Dirichlet
conditions. The simplest is the “Stiff Spring” model, so named for its interpretation
in solid mechanics. See “Elliptic Equations” on page 5-2 for the scalar case, which is
equivalent to a diagonal h-matrix. For the general case, Dirichlet conditions
hu = r

are approximated by adding a term

L( )¢ - ¢h h hu r

to the equations KU = F, where L is a large number such as 104 times a representative
size of the elements of K.
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When this number is increased, hu = r will be more accurately satisfied, but the
potential ill-conditioning of the modified equations will become more serious.

The second method is also applicable to general mixed conditions with nondiagonal h,
and is free of the ill-conditioning, but is more involved computationally. Assume that
there are Np nodes in the mesh. Then the number of unknowns is NpN = Nu. When
Dirichlet boundary conditions fix some of the unknowns, the linear system can be
correspondingly reduced. This is easily done by removing rows and columns when u
values are given, but here we must treat the case when some linear combinations of the
components of u are given, hu = r. These are collected into HU = R where H is an M-
by-Nu matrix and R is an M-vector.

With the reaction force term the system becomes
KU +H´ µ = F
HU = R.

The constraints can be solved for M of the U-variables, the remaining called V, an Nu –
M vector. The null space of H is spanned by the columns of B, and U = BV + ud makes
U satisfy the Dirichlet conditions. A permutation to block-diagonal form exploits the
sparsity of H to speed up the following computation to find B in a numerically stable way.
µ can be eliminated by premultiplying by B´ since, by the construction, HB = 0 or B´H´ =
0. The reduced system becomes
B´ KBV = B´ F – B´Kud

which is symmetric and positive definite if K is.
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Parabolic Equations

In this section...

“Reducing Parabolic Equations to Elliptic Equations” on page 5-17
“Solve a Parabolic Equation” on page 5-19

Reducing Parabolic Equations to Elliptic Equations

The elliptic solver allows other types of equations to be more easily implemented. In this
section, we show how the parabolic equation can be reduced to solving elliptic equations.
This is done using the function parabolic.

Consider the equation

d c au f
u

t
u

∂

∂
—-— ◊ ( ) + = in W,

with the initial condition
u(x,0) = u0(x) for x∊Ω

where x represents a 2-D or 3-D point and there are boundary conditions of the same
kind as for the elliptic equation on ∂Ω.

The heat equation reads

rC k h u u f
u

t
u

∂

∂
— —- ( ) + -( ) =•·

in the presence of distributed heat loss to the surroundings. ρ is the density, C is the
thermal capacity, k is the thermal conductivity, h is the film coefficient, u∞ is the ambient
temperature, and f is the heat source.

For time-independent coefficients, the steady-state solution of the equation is the
solution to the standard elliptic equation
–∇ · (c∇u) + au = f.

Assuming a mesh on Ω and t ≥ 0, expand the solution to the PDE (as a function of x) in
the Finite Element Method basis:
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u t U t
i i

i

( , ) ( ) ( ).x x= Â f

Plugging the expansion into the PDE, multiplying with a test function ϕj, integrating
over Ω, and applying Green's formula and the boundary conditions yield

d
dU t

dt
d c a d q dj i

i

i

j i j i j if f f f f f f f
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Ë
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.f fx s

W W

In matrix notation, we have to solve the linear, large and sparse ODE system

M
dU

dt
KU F+ = .

This method is traditionally called method of lines semidiscretization.

Solving the ODE with the initial value
Ui(0) = u0(xi)

yields the solution to the PDE at each node xi and time t. Note that K and F are the
stiffness matrix and the right-hand side of the elliptic problem
–∇ · (c∇u) + au = f in Ω

with the original boundary conditions, while M is just the mass matrix of the problem
–∇ · (0∇u) + du = 0 in Ω.

When the Dirichlet conditions are time dependent, F  contains contributions from time
derivatives of h and r. These derivatives are evaluated by finite differences of the user-
specified data.

The ODE system is ill conditioned. Explicit time integrators are forced by stability
requirements to very short time steps while implicit solvers can be expensive since
they solve an elliptic problem at every time step. The numerical integration of the
ODE system is performed by the MATLAB ODE Suite functions, which are efficient
for this class of problems. The time step is controlled to satisfy a tolerance on the
error, and factorizations of coefficient matrices are performed only when necessary.
When coefficients are time dependent, the necessity of reevaluating and refactorizing
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the matrices each time step may still make the solution time consuming, although
parabolic reevaluates only that which varies with time. In certain cases a time-
dependent Dirichlet matrix h(t) may cause the error control to fail, even if the problem
is mathematically sound and the solution u(t) is smooth. This can happen because the
ODE integrator looks only at the reduced solution v with u = Bv + ud. As h changes, the
pivoting scheme employed for numerical stability may change the elimination order from
one step to the next. This means that B, v, and ud all change discontinuously, although u
itself does not.

Solve a Parabolic Equation

This example shows how to solve a parabolic equation and to set an initial condition as a
variable.

1 At the MATLAB command prompt, type pdetool.
2 Draw a rectangle in the PDE app axes.
3 From the Draw menu, select Export Geometry Description, Set Formula,

Labels.
4 In the Export dialog box, enter gd sf ns. Click OK.

The exported variables are available in the MATLAB workspace.
5 From the Boundary menu, select Boundary Mode.
6 From the Boundary menu, select Specify Boundary Conditions.
7 Set the Neumann and Dirichlet boundary conditions. If these conditions are not the

same for all the stages, set the conditions accordingly.
8 From the Boundary menu, select Export Decomposed Geometry, Boundary

Cond's.
9 In the Export dialog box, enter g b. Click OK.
10 From the PDE menu, select PDE Mode.
11 From the PDE menu, select PDE Specification.
12 Set the partial differential equation (PDE) coefficients, which are the same for any

value of time.
13 From the PDE menu, select Export PDE Coefficients.
14 In the Export dialog box, enter c a f d. Click OK.
15 From the Mesh menu, select Mesh Mode.
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16 From the Mesh menu, select Parameters.
17 Verify the initial mesh, jiggle mesh, and refine mesh values. The mesh is fixed for all

stages.
18 From the Mesh menu, select Export Mesh.
19 In the Export dialog box, enter p e t. Click OK.
20 Save the workspace variables into a MAT-file by typing save data.mat at the

MATLAB command prompt.
21 Save the following code as a file:

clear all;

close all;

load data

%For the first stage you need to specify an

%initial condition, U0.

U0 = 0; %U0 expands to the correct size automatically.

%Divide the time range into 4 stages.

time = {0:.01:1, 1:.05:3, 3:.1:5, 5:.5:20};

for i = 1:4

U1 = parabolic(U0,time{i},b,p,e,t,c,a,f,d);

for j = 1:size(U1,2)

H =pdeplot(p,e,t,'xydata',U1(:,j),'zdata',...

U1(:,j),'mesh','off');

set(gca,'ZLim',[-80 0]);

drawnow

end

%Reset the initial condition at all points.

U0 = U1(:,1);

end

This file uses the variables you defined in the MATLAB workspace to solve a
parabolic equation in stages. Within this file, you set the initial condition as a
variable.
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Hyperbolic Equations

Using the same ideas as for the parabolic equation, hyperbolic implements the
numerical solution of

d
u

t
c u au f

∂

∂
— ◊ —( ) + =-

2

2
,

for x in Ω, where x represents a 2-D or 3-D point, with the initial conditions

u u

v
u

t

x x

x x

,

,

0

0

0

0

( ) = ( )

( ) = ( )∂

∂

for all x in Ω, and usual boundary conditions. In particular, solutions of the equation utt -
cΔu = 0 are waves moving with speed c .

Using a given mesh of Ω, the method of lines yields the second order ODE system

M
d U

dt

KU F

2

2
+ =

with the initial conditions

U u
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( ) = ( )
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x

after we eliminate the unknowns fixed by Dirichlet boundary conditions. As before, the
stiffness matrix K and the mass matrix M are assembled with the aid of the function
assempde from the problems
–∇ · (c∇u) + au = f and –∇ · (0∇u) + du = 0.
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Eigenvalue Equations

Partial Differential Equation Toolbox software handles the following basic eigenvalue
problem:

-— ◊ —( ) + =c u au dul ,

where λ is an unknown complex number. In solid mechanics, this is a problem associated
with wave phenomena describing, e.g., the natural modes of a vibrating membrane.
In quantum mechanics λ is the energy level of a bound state in the potential well a(x),
where x represents a 2-D or 3-D point.

The numerical solution is found by discretizing the equation and solving the resulting
algebraic eigenvalue problem. Let us first consider the discretization. Expand u in the
FEM basis, multiply with a basis element, and integrate on the domain Ω. This yields the
generalized eigenvalue equation
KU = λMU

where the mass matrix corresponds to the right side, i.e.,

M d di j j i, ( ) ( ) ( )= Ú x x x xf f
W

The matrices K and M are produced by calling assema for the equations
–∇ · (c∇u) + au = 0 and –∇ · (0∇u) + du = 0

In the most common case, when the function d(x) is positive, the mass matrix M is
positive definite symmetric. Likewise, when c(x) is positive and we have Dirichlet
boundary conditions, the stiffness matrix K is also positive definite.

The generalized eigenvalue problem, KU = λMU, is now solved by the Arnoldi algorithm
applied to a shifted and inverted matrix with restarts until all eigenvalues in the user-
specified interval have been found.

Let us describe how this is done in more detail. You may want to look at the examples
“Eigenvalues and Eigenfunctions for the L-Shaped Membrane” on page 3-104 or
“Eigenvalues and Eigenmodes of a Square” on page 3-110, where actual runs are
reported.

First a shift µ is determined close to where we want to find the eigenvalues. When both K
and M are positive definite, it is natural to take µ = 0, and get the smallest eigenvalues;
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in other cases take any point in the interval [lb,ub] where eigenvalues are sought.
Subtract µM from the eigenvalue equation and get (K - µM)U = (λ - µ)MU. Then multiply
with the inverse of this shifted matrix and get

1 1

l m
m

-
= -( )-U K M MU .

This is a standard eigenvalue problem AU = θU, with the matrix A = (K – µM)-1M and
eigenvalues

q
l m

i

i

=
-

1

where i = 1, . . ., n. The largest eigenvalues θi of the transformed matrix A now
correspond to the eigenvalues λi = µ + 1/θi of the original pencil (K,M) closest to the shift
µ.

The Arnoldi algorithm computes an orthonormal basis V where the shifted and inverted
operator A is represented by a Hessenberg matrix H,
AVj = VjHj,j + Ej.

(The subscripts mean that Vj and Ej have j columns and Hj,j has j rows and columns.
When no subscripts are used we deal with vectors and matrices of size n.)

Some of the eigenvalues of this Hessenberg matrix Hj,j eventually give good
approximations to the eigenvalues of the original pencil (K,M) when the basis grows in
dimension j, and less and less of the eigenvector is hidden in the residual matrix Ej.

The basis V is built one column vj at a time. The first vector v1 is chosen at random, as n
normally distributed random numbers. In step j, the first j vectors are already computed
and form the n ×j matrix Vj. The next vector vj+1 is computed by first letting A operate on
the newest vector vj, and then making the result orthogonal to all the previous vectors.

This is formulated as h v Av V hj j j j j+ +
= -1 1 , where the column vector hj consists of

the Gram-Schmidt coefficients, and hj+1,j is the normalization factor that gives vj+1 unit
length. Put the corresponding relations from previous steps in front of this and get

AV V H v h ej j j j j j j j
T

= +
+ +, ,1 1
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where Hj,j is a j×j Hessenberg matrix with the vectors hj as columns. The second term
on the right-hand side has nonzeros only in the last column; the earlier normalization
factors show up in the subdiagonal of Hj,j.

The eigensolution of the small Hessenberg matrix H gives approximations to some of
the eigenvalues and eigenvectors of the large matrix operator Aj,j in the following way.
Compute eigenvalues θi and eigenvectors si of Hj,j,

H s s i jj j i i i, , , ..., .= =q 1

Then yi = Vjsi is an approximate eigenvector of A, and its residual is

r Ay y AV s V s AV V H s v h si i i i j i j i i j j j j i j j j i j= - = - = - = + +q q ( ), , ,1 1

This residual has to be small in norm for θi to be a good eigenvalue approximation. The
norm of the residual is

r h si j j j i=
+1, , ,

the product of the last subdiagonal element of the Hessenberg matrix and the last
element of its eigenvector. It seldom happens that hj+1,j gets particularly small, but after
sufficiently many steps j there are always some eigenvectors si with small last elements.
The long vector Vj+1 is of unit norm.

It is not necessary to actually compute the eigenvector approximation yi to get the norm
of the residual; we only need to examine the short vectors si, and flag those with tiny last
components as converged. In a typical case n may be 2000, while j seldom exceeds 50, so
all computations that involve only matrices and vectors of size j are much cheaper than
those involving vectors of length n.

This eigenvalue computation and test for convergence is done every few steps j, until
all approximations to eigenvalues inside the interval [lb,ub] are flagged as converged.
When n is much larger than j, this is done very often, for smaller n more seldom.
When all eigenvalues inside the interval have converged, or when j has reached a
prescribed maximum, the converged eigenvectors, or more appropriately Schur vectors,
are computed and put in the front of the basis V.

After this, the Arnoldi algorithm is restarted with a random vector, if all approximations
inside the interval are flagged as converged, or else with the best unconverged
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approximate eigenvector yi. In each step j of this second Arnoldi run, the vector is
made orthogonal to all vectors in V including the converged Schur vectors from the
previous runs. This way, the algorithm is applied to a projected matrix, and picks up a
second copy of any double eigenvalue there may be in the interval. If anything in the
interval converges during this second run, a third is attempted and so on, until no more
approximate eigenvalues θi show up inside. Then the algorithm signals convergence.
If there are still unconverged approximate eigenvalues after a prescribed maximum
number of steps, the algorithm signals nonconvergence and reports all solutions it has
found.

This is a heuristic strategy that has worked well on both symmetric, nonsymmetric, and
even defective eigenvalue problems. There is a tiny theoretical chance of missing an
eigenvalue, if all the random starting vectors happen to be orthogonal to its eigenvector.
Normally, the algorithm restarts p times, if the maximum multiplicity of an eigenvalue is
p. At each restart a new random starting direction is introduced.

The shifted and inverted matrix A = (K – µM)–1M is needed only to operate on a vector vj
in the Arnoldi algorithm. This is done by computing an LU factorization,
P(K – µM)Q = LU

using the sparse MATLAB command lu (P and Q are permutations that make the
triangular factors L and U sparse and the factorization numerically stable). This
factorization needs to be done only once, in the beginning, then x = Avj is computed as,
x = QU–1L–1PMvj

with one sparse matrix vector multiplication, a permutation, sparse forward- and back-
substitutions, and a final renumbering.
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Nonlinear Equations

The low-level Partial Differential Equation Toolbox functions are aimed at solving linear
equations. Since many interesting computational problems are nonlinear, the software
contains a nonlinear solver built on top of the assempde function.

Note Before solving a nonlinear elliptic PDE, from the Solve menu in the PDE app,
select Parameters. Then, select the Use nonlinear solver check box and click OK. At
the command line, use pdenonlin instead of assempde.

The parabolic and hyperbolic functions automatically detect when they need to use
a nonlinear solver.

The basic idea is to use Gauss-Newton iterations to solve the nonlinear equations. Say
you are trying to solve the equation
r(u) = –∇ · (c(u)∇u) + a(u)u - f(u) = 0.

In the FEM setting you solve the weak form of r(u) = 0. Set as usual

u U j j( )x = Â f

where x represents a 2-D or 3-D point. Then multiply the equation by an arbitrary
test function ϕi, integrate on the domain Ω, and use Green's formula and the boundary
conditions to obtain
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which has to hold for all indices i.

The residual vector ρ(U) can be easily computed as
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ρ(U) = (K + M + Q)U – (F + G)

where the matrices K, M, Q and the vectors F and G are produced by assembling the
problem
–∇ · (c(U)∇u) + a(U)u = f(U).

Assume that you have a guess U(n) of the solution. If U(n) is close enough to the exact
solution, an improved approximation U(n+1) is obtained by solving the linearized problem

∂ ( )
∂

-( ) = - ( )+r
ar

U

U
U U U

n
n n n

( )
( ) ( ) ( ) ,1

where a  is a positive number. (It is not necessary that ρ(U) = 0 have a solution even if
ρ(u) = 0 has.) In this case, the Gauss-Newton iteration tends to be the minimizer of the
residual, i.e., the solution of minU r( )U .

It is well known that for sufficiently small a

r rU U
n n( ) ( )+( ) < ( )1

and

p
U

U
Un

n
n= ∂ ( )

∂

Ê

Ë
Á

ˆ

¯
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1

is called a descent direction for r( )U , where ◊  is the L2-norm. The iteration is

U U pn n
n

( ) ( ) ,+
= +

1
a

where a  ≤ 1 is chosen as large as possible such that the step has a reasonable descent.

The Gauss-Newton method is local, and convergence is assured only when U(0) is
close enough to the solution. In general, the first guess may be outside the region of
convergence. To improve convergence from bad initial guesses, a damping strategy is
implemented for choosing α, the Armijo-Goldstein line search. It chooses the largest



5 Finite Element Method

5-28

damping coefficient α out of the sequence 1, 1/2, 1/4, . . . such that the following
inequality holds:

r r a r
a

U U p Un n
n

n( ) ( ) ( )( ) - ( ) + ( )≥
2

which guarantees a reduction of the residual norm by at least 1 – a /2. Each step of the

line-search algorithm requires an evaluation of the residual r aU pn
n

( ) +( ) .

An important point of this strategy is that when U(n) approaches the solution, then a →1
and thus the convergence rate increases. If there is a solution to ρ(U) = 0, the scheme
ultimately recovers the quadratic convergence rate of the standard Newton iteration.

Closely related to the preceding problem is the choice of the initial guess U(0). By default,
the solver sets U(0) and then assembles the FEM matrices K and F and computes
U(1) = K–1F

The damped Gauss-Newton iteration is then started with U(1), which should be a better
guess than U(0). If the boundary conditions do not depend on the solution u, then U(1)

satisfies them even if U(0) does not. Furthermore, if the equation is linear, then U(1) is the
exact FEM solution and the solver does not enter the Gauss-Newton loop.

There are situations where U(0) = 0 makes no sense or convergence is impossible.

In some situations you may already have a good approximation and the nonlinear solver
can be started with it, avoiding the slow convergence regime. This idea is used in the
adaptive mesh generator. It computes a solution %U  on a mesh, evaluates the error, and
may refine certain triangles. The interpolant of %U  is a very good starting guess for the
solution on the refined mesh.

In general the exact Jacobian

J
U

U
n

n

=
( )∂

∂

r ( )

is not available. Approximation of Jn by finite differences in the following way is
expensive but feasible. The ith column of Jn can be approximated by
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which implies the assembling of the FEM matrices for the triangles containing grid point
i. A very simple approximation to Jn, which gives a fixed point iteration, is also possible
as follows. Essentially, for a given U(n), compute the FEM matrices K and F and set
U(n+1) = K–1F .

This is equivalent to approximating the Jacobian with the stiffness matrix. Indeed, since
ρ(U(n)) = KU(n) – F, putting Jn = K yields

U U J U U K KU F K F
n n

n

n n n( ) ( ) ( ) ( ) ( )
.

+ - - -= - ( ) = - -( ) =1 1 1 1r

In many cases the convergence rate is slow, but the cost of each iteration is cheap.

The Partial Differential Equation Toolbox nonlinear solver also provides for a
compromise between the two extremes. To compute the derivative of the mapping
U→KU, proceed as follows. The a term has been omitted for clarity, but appears again in
the final result.

∂
∂

— —

- ( )—

( )
= +( ) +( )Ê

ËÁÆ ÚÂKU
c U U

U
d

c U

i
j l i l l j

lj

lim ,
e e

ef f f ed

f

0

1
x

W

ll i l

j i j l i l
l

d U

c U d
c

u
d U

— ˆ

¯
˜

= ( )— — +
∂
∂

— —

Ú

Ú ÚÂ

f

f f f f f

x

x x

W

W W

.

The first integral term is nothing more than Ki,j.

The second term is “lumped,” i.e., replaced by a diagonal matrix that contains the row
sums. Since Σjϕj = 1, the second term is approximated by
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which is the ith component of K(c')U, where K(c') is the stiffness matrix associated with the
coefficient ∂c/∂u rather than c. The same reasoning can be applied to the derivative of the
mapping U→MU. The derivative of the mapping U→ –F is exactly

-
∂
∂Ú
f

u
di jf f x

W

which is the mass matrix associated with the coefficient ∂f/∂u. Thus the Jacobian of the
residual ρ(U) is approximated by

J K M K M Uc a f c a= + + +( )( )- ¢ ¢ ¢( ) ( ) ( ) ( )diag

where the differentiation is with respect to u, K and M designate stiffness and mass
matrices, and their indices designate the coefficients with respect to which they are
assembled. At each Gauss-Newton iteration, the nonlinear solver assembles the matrices
corresponding to the equations
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and then produces the approximate Jacobian. The differentiations of the coefficients are
done numerically.

In the general setting of elliptic systems, the boundary conditions are appended to the
stiffness matrix to form the full linear system:

% % %KU
K H

H

U F

R
F=

¢È

Î
Í

˘

˚
˙
È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙ =

0 m
,

where the coefficients of %K  and %F  may depend on the solution %U . The “lumped”
approach approximates the derivative mapping of the residual by

J H

H

¢È

Î
Í

˘

˚
˙

0

The nonlinearities of the boundary conditions and the dependencies of the coefficients
on the derivatives of %U  are not properly linearized by this scheme. When such



 Nonlinear Equations

5-31

nonlinearities are strong, the scheme reduces to the fix-point iteration and may converge
slowly or not at all. When the boundary conditions are linear, they do not affect the
convergence properties of the iteration schemes. In the Neumann case they are invisible
(H is an empty matrix) and in the Dirichlet case they merely state that the residual is
zero on the corresponding boundary points.
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adaptmesh
Adaptive mesh generation and PDE solution

Syntax

[u,p,e,t] = adaptmesh(g,b,c,a,f)

[u,p,e,t] = adaptmesh(g,b,c,a,f,'PropertyName',PropertyValue,)

Description

[u,p,e,t] = adaptmesh(g,b,c,a,f) [u,p,e,t] =
adaptmesh(g,b,c,a,f,'PropertyName',PropertyValue,) performs adaptive
mesh generation and PDE solution. Optional arguments are given as property name/
property value pairs.

The function produces a solution u to the elliptic scalar PDE problem

-— ◊ —( ) + =c u au f ,

for (x,y) ∊ Ω, or the elliptic system PDE problem

-— ◊ ƒ—( ) + =c u au f .

with the problem geometry and boundary conditions given by g and b. The mesh is
described by the p, e, and t.

The solution u is represented as the solution vector u. For details on the representation of
the solution vector, see assempde.

The algorithm works by solving a sequence of PDE problems using refined triangular
meshes. The first triangular mesh generation is obtained either as an optional argument
to adaptmesh or by a call to initmesh without options. The following generations
of triangular meshes are obtained by solving the PDE problem, computing an error
estimate, selecting a set of triangles based on the error estimate, and then finally
refining these triangles. The solution to the PDE problem is then recomputed. The loop
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continues until no triangles are selected by the triangle selection method, or until the
maximum number of triangles is attained, or until the maximum number of triangle
generations has been generated.

g describes the geometry of the PDE problem. g can be a Decomposed Geometry matrix,
the name of a Geometry file, or a function handle to a Geometry file. For details, see “2-D
Geometry”.

b describes the boundary conditions of the PDE problem. For the recommended way
of specifying boundary conditions, see “Specify Boundary Conditions Objects” on page
2-127. For all methods of specifying boundary conditions, see “Forms of Boundary
Condition Specification” on page 2-124.

The adapted triangular mesh of the PDE problem is given by the mesh data p, e, and t.
For details on the mesh data representation, see “Mesh Data” on page 2-161.

The coefficients c, a, and f of the PDE problem can be given in a wide variety of ways.
In the context of adaptmesh the coefficients can depend on u if the nonlinear solver
is enabled using the property nonlin. The coefficients cannot depend on t, the time.
For a complete listing of all options, see “Scalar PDE Coefficients” on page 2-59 and
“Coefficients for Systems of PDEs” on page 2-86.

The following table lists the property name/value value pairs, their default values, and
descriptions of the properties.

Property Value Default Description

Maxt positive integer inf Maximum number of new
triangles

Ngen positive integer 10 Maximum number of triangle
generations

Mesh p1, e1, t1 initmesh Initial mesh
Tripick MATLAB function pdeadworst Triangle selection method
Par numeric 0.5 Function parameter
Rmethod 'longest' |

'regular'

'longest' Triangle refinement method

Nonlin 'on' | 'off' 'off' Use nonlinear solver
Toln numeric 1e-4 Nonlinear tolerance
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Property Value Default Description

Init u0 0 Nonlinear initial value
Jac 'fixed | 'lumped' |

'full'

'fixed' Nonlinear Jacobian calculation

norm numeric | inf inf Nonlinear residual norm
MesherVersion 'R2013a' |

'preR2013a'

'preR2013a' Algorithm for generating initial
mesh

Par is passed to the Tripick function, which is described later. Normally it is used as
tolerance of how well the solution fits the equation.

No more than Ngen successive refinements are attempted. Refinement is also stopped
when the number of triangles in the mesh exceeds Maxt.

p1, e1, and t1 are the input mesh data. This triangular mesh is used as starting mesh
for the adaptive algorithm. For details on the mesh data representation, see initmesh.
If no initial mesh is provided, the result of a call to initmesh with no options is used as
the initial mesh.

The triangle selection method, Tripick, is a user-definable triangle selection method.
Given the error estimate computed by the function pdejmps, the triangle selection
method selects the triangles to be refined in the next triangle generation. The function
is called using the arguments p, t, cc, aa, ff, u, errf, and par. p and t represent
the current generation of triangles, cc, aa, and ff are the current coefficients for the
PDE problem, expanded to triangle midpoints, u is the current solution, errf is the
computed error estimate, and par, the function parameter, given to adaptmesh as
optional argument. The matrices cc, aa, ff, and errf all have Nt columns, where Nt
is the current number of triangles. The number of rows in cc, aa, and ff are exactly
the same as the input arguments c, a, and f. errf has one row for each equation in
the system. There are two standard triangle selection methods—pdeadworst and
pdeadgsc. pdeadworst selects triangles where errf exceeds a fraction (default: 0.5) of
the worst value, and pdeadgsc selects triangles using a relative tolerance criterion.

The refinement method is either longest or regular. For details on the refinement
method, see refinemesh.

The MesherVersion property chooses the algorithm for mesh generation. The
'R2013a' algorithm runs faster, and can triangulate more geometries than the
'preR2013a' algorithm. Both algorithms use Delaunay triangulation.
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The adaptive algorithm can also solve nonlinear PDE problems. For nonlinear PDE
problems, the Nonlin parameter must be set to on. The nonlinear tolerance Toln,
nonlinear initial value u0, nonlinear Jacobian calculation Jac, and nonlinear residual
norm Norm are passed to the nonlinear solver pdenonlin. For details on the nonlinear
solver, see pdenonlin.

Examples

Solve the Laplace equation over a circle sector, with Dirichlet boundary conditions u =
cos(2/3atan2( y , x )) along the arc, and u = 0 along the straight lines, and compare to the
exact solution. Set options so that adaptmesh refines the triangles using the worst error
criterion until it obtains a mesh with at least 500 triangles:

[u,p,e,t]=adaptmesh('cirsg','cirsb',1,0,0,'maxt',500,...

                       'tripick','pdeadworst','ngen',inf);

x=p(1,:); y=p(2,:);

exact=((x.^2+y.^2).^(1/3).*cos(2/3*atan2(y,x)))';

max(abs(u-exact))

Number of triangles: 197

Number of triangles: 201

Number of triangles: 216

Number of triangles: 233

Number of triangles: 254

Number of triangles: 265

Number of triangles: 313

Number of triangles: 344

Number of triangles: 417

Number of triangles: 475

Number of triangles: 629

Maximum number of triangles obtained.

ans =

    0.0028

size(t,2)

ans =



6 Functions — Alphabetical List

6-6

   629

The maximum absolute error is 0.0028, with 629 triangles.

pdemesh(p,e,t)

Test how many refinements you have to use with a uniform triangle net:

[p,e,t]=initmesh('cirsg');

[p,e,t]=refinemesh('cirsg',p,e,t);

u=assempde('cirsb',p,e,t,1,0,0);
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x=p(1,:); y=p(2,:);

exact=((x.^2+y.^2).^(1/3).*cos(2/3*atan2(y,x)))';

max(abs(u-exact))

ans =

    0.0121

size(t,2)

ans =

   788

[p,e,t]=refinemesh('cirsg',p,e,t);

u=assempde('cirsb',p,e,t,1,0,0);

x=p(1,:); y=p(2,:);

exact=((x.^2+y.^2).^(1/3).*cos(2/3*atan2(y,x)))';

max(abs(u-exact))

ans =

    0.0078

size(t,2)

ans =

        3152

pdemesh(p,e,t)
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Uniform refinement with 3152 triangles produces an error of 0.0078. This error is over
three times as large as that produced by the adaptive method (0.0028) with many fewer
triangles (629). For a problem with regular solution, we expect an  error, but this
solution is singular since  at the origin.

Diagnostics

Upon termination, one of the following messages is displayed:

• Adaption completed (This means that the Tripick function returned zero
triangles to refine.)
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• Maximum number of triangles obtained

• Maximum number of refinement passes obtained

See Also
assempde | initmesh | pdeadgsc | pdeadworst | pdejmps | refinemesh
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AnalyticGeometry Properties
2-D geometry description

AnalyticGeometry describes 2-D geometry in the form of an object. A PDEModel
object has a Geometry property. For 2-D geometry, the Geometry property is an
AnalyticGeometry object.

Specify a 2-D geometry for your model using the geometryFromEdges function.

NumEdges — Number of geometry edges
positive integer

Number of geometry edges, returned as a positive integer.
Data Types: double

NumFaces — Number of geometry faces
positive integer

Number of geometry faces, returned as a positive integer. If your geometry is one
connected region, then NumFaces = 1.

Data Types: double

NumVertices — Number of geometry vertices
positive integer

Number of geometry vertices, returned as a positive integer.
Data Types: double

See Also
geometryFromEdges | PDEModel

More About
• “Solve Problems Using PDEModel Objects” on page 2-11

Introduced in R2015a
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applyBoundaryCondition

Add boundary condition to PDEModel container

Syntax

applyBoundaryCondition(model,RegionType,RegionID,Name,Value)

bc = applyBoundaryCondition(model,RegionType,RegionID,Name,Value)

Description

applyBoundaryCondition(model,RegionType,RegionID,Name,Value) adds
a boundary condition to model. The boundary condition applies to boundary regions
of type RegionType with ID numbers in RegionID, and with values specified in the
Name,Value pairs.

bc = applyBoundaryCondition(model,RegionType,RegionID,Name,Value)

returns the boundary condition object.

Examples

Apply Dirichlet and Neumann Boundary Conditions

Apply both types of boundary conditions to a scalar problem.

Create a PDE model and import a simple block geometry.

model = createpde;

importGeometry(model,'Block.stl');

View the face labels.

h = pdegplot(model,'FaceLabels','on');

h(1).FaceAlpha = 0.5;
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Set zero Dirichlet conditions on the narrow edges, which are labeled 1 through 4.

applyBoundaryCondition(model,'Face',1:4,'u',0);

Set Neumann boundary conditions with opposite signs on faces 5 and 6.

applyBoundaryCondition(model,'Face',5,'g',1);

applyBoundaryCondition(model,'Face',6,'g',-1);

Solve an elliptic PDE with these boundary conditions, and plot the result.

c = 1;

a = 0;

f = 0;
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generateMesh(model);

u = assempde(model,c,a,f);

pdeplot3D(model,'colormapdata',u);

Input Arguments

model — PDE model
PDEModel object

PDE model, specified as a PDEModel object.

Example: model = createpde(1)
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RegionType — Boundary type
'Face' for 3-D geometry | 'Edge' for 2-D geometry

Boundary type, specified as 'Face' for 3-D geometry or 'Edge' for 2-D geometry.

Example: applyBoundaryCondition(model,'Face',3,'u',0)

Data Types: char

RegionID — Boundary ID
vector of positive integers

Boundary ID, specified as a vector of positive integers. To determine which ID
corresponds to which portion of the geometry boundary, use the pdegplot function. Set
the 'FaceLabels' (3-D) or 'EdgeLabels' (2-D) name-value pair set to 'on'.

Example: applyBoundaryCondition(model,'Face',3:6,'u',0)

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Note: You can set only one type of boundary condition in a call to
applyBoundaryCondition: a 'u',EquationIndex pair, or an 'r','h' pair, or a
'g','q' pair. If you set only one member of a pair, the other takes its default value.

Example: applyBoundaryCondition(model,'Face',1:4,'u',0)

'r' — Dirichlet condition h*u = r
zeros(N,1) (default) | vector with N elements | function handle

Dirichlet condition h*u = r, specified as a vector with N elements or as a function
handle. N is the number of PDEs in the system. See “Systems of PDEs” on page 2-58.
For the syntax of the function handle form of r, see “Specify Nonconstant Boundary
Conditions” on page 2-138.
Example: 'r',[0;4;-1]
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Data Types: double | function_handle
Complex Number Support: Yes

'h' — Dirichlet condition h*u = r
eye(N) (default) | N-by-N matrix | vector with N^2 elements | function handle

Dirichlet condition h*u = r, specified as an N-by-N matrix, as a vector with N^2
elements, or as a function handle. N is the number of PDEs in the system. See “Systems
of PDEs” on page 2-58. For the syntax of the function handle form of h, see “Specify
Nonconstant Boundary Conditions” on page 2-138.
Example: 'h',[2,1;1,2]

Data Types: double | function_handle
Complex Number Support: Yes

'g' — Generalized Neumann condition n·(c×∇u) + qu = g
zeros(N,1) (default) | vector with N elements | function handle

Generalized Neumann condition n·(c×∇u) + qu = g, specified as a vector with N
elements or as a function handle. N is the number of PDEs in the system. See “Systems
of PDEs” on page 2-58. For the syntax of the function handle form of g, see “Specify
Nonconstant Boundary Conditions” on page 2-138.
Example: 'g',[3;2;-1]

Data Types: double | function_handle
Complex Number Support: Yes

'q' — Generalized Neumann condition n·(c×∇u) + qu = g
zeros(N) (default) | N-by-N matrix | vector with N^2 elements | function handle

Generalized Neumann condition n·(c×∇u) + qu = g, specified as an N-by-N matrix,
as a vector with N^2 elements, or as a function handle. N is the number of PDEs in the
system. See “Systems of PDEs” on page 2-58. For the syntax of the function handle form
of q, see “Specify Nonconstant Boundary Conditions” on page 2-138.

Example: 'q',eye(3)

Data Types: double | function_handle
Complex Number Support: Yes

'u' — Dirichlet conditions
zeros(N,1) (default) | vector of up to N elements | function handle
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Dirichlet conditions, specified as a vector of up to N elements or as a function handle.
EquationIndex and u must have the same length. For the syntax of the function handle
form of u, see “Specify Nonconstant Boundary Conditions” on page 2-138.

Example: applyBoundaryCondition(model,'Face',[2,4,11],'u',0)

Data Types: double
Complex Number Support: Yes

'EquationIndex' — Index of specified u components
1:N (default) | vector of integers with entries from 1 to N

Index of specified u components, specified as a vector of integers with entries from 1 to N.
EquationIndex and u must have the same length.

Example: applyBoundaryCondition(model,'Face',[2,4,11],'u',
[3,-1],'EquationIndex',[2,3])

Data Types: double

'Vectorized' — Vectorized function evaluation
'off' (default) | 'on'

Vectorized function evaluation, specified as 'on' or 'off'. This evaluation applies when
you pass a function handle as an argument. To save time in function handle evaluation,
specify 'on', assuming that your function handle computes in a vectorized fashion.
See “Vectorization”. For details of this evaluation, see “Specify Nonconstant Boundary
Conditions” on page 2-138.
Example: applyBoundaryCondition(model,'Face',
[2,4,11],'u',@ucalculator,'Vectorized','on')

Data Types: char

Output Arguments

bc — Boundary condition
BoundaryCondition object

Boundary condition, returned as a BoundaryCondition object. The model object
contains a vector of BoundaryCondition objects. bc is the last element of this vector.
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More About
• “Solve Problems Using PDEModel Objects” on page 2-11

See Also
BoundaryCondition Properties | PDEModel

Introduced in R2015a
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assema

Assemble area integral contributions

Syntax

[K,M,F] = assema(p,t,c,a,f)

[K,M,F] = assema(p,t,c,a,f,u0)

[K,M,F] = assema(p,t,c,a,f,u0,time)

[K,M,F] = assema(p,t,c,a,f,u0,time,sdl)

[K,M,F] = assema(p,t,c,a,f,time)

[K,M,F] = assema(p,t,c,a,f,time,sdl)

[K,M,F] = assema(model,c,a,f, ___ )

Description

[K,M,F] = assema(p,t,c,a,f) assembles the stiffness matrix K, the mass matrix M,
and the right-hand side vector F.

The input parameters p, t, c, a, f, u0, time, and sdl have the same meaning as in
assempde. You cannot include an sdl argument in a model with 3-D geometry.

You can substitute model, a meshed PDEModel object, for the (p,t) input arguments.

More About
• “Scalar PDE Coefficients” on page 2-59
• “Coefficients for Systems of PDEs” on page 2-86
• “Specify 3-D PDE Coefficients in Function Form” on page 2-70
• “Solve Problems Using PDEModel Objects” on page 2-11
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See Also
assempde

Introduced before R2006a
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assemb
Assemble boundary condition contributions

Syntax
[Q,G,H,R] = assemb(b,p,e)

[Q,G,H,R] = assemb(b,p,e,u0)

[Q,G,H,R] = assemb(b,p,e,u0,time)

[Q,G,H,R] = assemb(b,p,e,u0,time,sdl)

[Q,G,H,R] = assemb(b,p,e,time)

[Q,G,H,R] = assemb(b,p,e,time,sdl)

[Q,G,H,R] = assemb(model, ___ )

Description

[Q,G,H,R] = assemb(b,p,e) assembles the matrices Q and H, and the vectors G
and R. Q should be added to the system matrix and contains contributions from mixed
boundary conditions. G should be added to the right side and contains contributions from
generalized Neumann and mixed boundary conditions. The equation H*u = R represents
the Dirichlet type boundary conditions.

The input parameters p, e, u0, time, and sdl have the same meaning as in assempde.
You cannot include an sdl argument in a model with 3-D geometry.

You can substitute model, a meshed PDEModel object, for the (b,p,e) input arguments.

b describes the boundary conditions of the PDE problem. For the recommended way
of specifying boundary conditions, see “Specify Boundary Conditions Objects” on page
2-127. For all methods of specifying boundary conditions, see “Forms of Boundary
Condition Specification” on page 2-124.

The format of the Boundary Condition matrix is described further in this section.
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Partial Differential Equation Toolbox software treats the following boundary condition
types:

• On a generalized Neumann boundary segment, q and g are related to the normal
derivative value by:

n c· ƒ( ) + =—u qu g

• On a Dirichlet boundary segment, hu = r.

The software can also handle systems of partial differential equations over the domain Ω.
Let the number of variables in the system be N. The general boundary condition is hu =
r.

n c qu g hu· .ƒ( ) + = + ¢— m

The notation n c u· ƒ( )—  indicates that the N by 1 matrix with (i,1)-component

cos( ) cos( ) sin( ) sin(, , , , , , , , ,a a ac
x

c
y

c
x

i j i j i j1 1 1 2 2 1
∂
∂

+
∂
∂

+
∂
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+ aa) , , ,c
y

ui j

j

N

2 2

1

∂
∂











=
∑

where α is the angle of the normal vector of the boundary, pointing in the direction out
from Ω, the domain.

The Boundary Condition matrix is created internally in the PDE app (actually a function
called by the PDE app) and then used from the function assemb for assembling the
contributions from the boundary to the matrices Q, G, H, and R. The Boundary Condition
matrix can also be saved onto a file as a boundary file for later use with the wbound
function.

For each column in the Decomposed Geometry matrix there must be a corresponding
column in the Boundary Condition matrix. The format of each column is according to the
following list:

• Row one contains the dimension N of the system.
• Row two contains the number M of Dirichlet boundary conditions.
• Row three to 3 + N2 – 1 contain the lengths for the strings representing q. The lengths

are stored in column-wise order with respect to q.
• Row 3 + N2 to 3 + N2 +N – 1 contain the lengths for the strings representing g.
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• Row 3 + N2 + N to 3 + N2 + N + MN – 1 contain the lengths for the strings
representing h. The lengths are stored in columnwise order with respect to h.

• Row 3 + N2 + N + MN to 3 + N2 + N + MN + M – 1 contain the lengths for the strings
representing r.

The following rows contain text expressions representing the actual boundary condition
functions. The text strings have the lengths according to above. The MATLAB text
expressions are stored in columnwise order with respect to matrices h and q. There
are no separation characters between the strings. You can insert MATLAB expressions
containing the following variables:

• The 2-D coordinates x and y.
• A boundary segment parameter s, proportional to arc length. s is 0 at the start of the

boundary segment and increases to 1 along the boundary segment in the direction
indicated by the arrow.

• The outward normal vector components nx and ny. If you need the tangential vector,
it can be expressed using nx and ny since tx = –ny and ty = nx.

• The solution u (only if the input argument u has been specified).
• The time t (only if the input argument time has been specified).

It is not possible to explicitly refer to the time derivative of the solution in the boundary
conditions.

Examples

Example 1

The following examples describe the format of the boundary condition matrix for one
column of the Decomposed Geometry matrix. For a boundary in a scalar PDE (N = 1)
with Neumann boundary condition (M = 0)

n · c xu—( ) = - 2

the boundary condition would be represented by the column vector

[1 0 1 5 '0' '-x.^2']' 

No lengths are stored for h or r.
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Also for a scalar PDE, the Dirichlet boundary condition
u = x2 – y2

is stored in the column vector

[1 1 1 1 1 9 '0' '0' '1' 'x.^2-y.^2']' 

For a system (N = 2) with mixed boundary conditions (M = 1):

h h r

q q

q q

g

g

11 12 1

11 12

21 22

1

2

( ) =

ƒ( ) +
Ê

Ë
Á

ˆ

¯
˜ =

Ê

Ë
Á

ˆ

¯
˜ +—

u

n c u u s·

the column appears similar to the following example:

2

1

lq11

lq21

lq12

lq22

lg1

lg2

lh11

lh12

lr1

q11 ...

q21 ...

q12 ...

q22 ...

g1 ...

g2 ...

h11 ...

h12 ...

r1 ...

Where lq11, lq21, . . . denote lengths of the MATLAB text expressions, and q11,
q21, . . . denote the actual expressions.

You can easily create your own examples by trying out the PDE app. Enter boundary
conditions by double-clicking on boundaries in boundary mode, and then export the
Boundary Condition matrix to the MATLAB workspace by selecting the Export
Decomposed Geometry, Boundary Cond's option from the Boundary menu.
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Example 2

The following example shows you how to find the boundary condition matrices for the
Dirichlet boundary condition u x y= -

2 2  on the boundary of a circular disk.

1 Create the following function in your working folder:

function [x,y] = circ_geom(bs,s)

%CIRC_GEOM Creates a geometry file for a unit circle.

% Number of boundary segments

nbs = 4;

if nargin == 0 % Number of boundary segments

    x = nbs;

elseif nargin == 1 % Create 4 boundary segments

    dl = [0     pi/2  pi      3*pi/2

        pi/2  pi    3*pi/2  2*pi

        1     1     1       1

        0     0     0       0];

    x = dl(:,bs);

else % Coordinates of edge segment points

    z = exp(i*s);

    x = real(z);

    y = imag(z);

end

2 Create a second function in your working folder that finds the boundary condition
matrices, Q, G, H, and R:

function assemb_example

% Use ASSEMB to find the boundary condition matrices.

% Describe the geometry using four boundary segments

figure(1)

pdegplot('circ_geom')

axis equal 

% Initialize the mesh

[p,e,t] = initmesh('circ_geom','Hmax',0.4); 

figure(2)

% Plot the mesh
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pdemesh(p,e,t) 

axis equal

% Define the boundary condition vector, b, 

% for the boundary condition u = x^2-y^2.

% For each boundary segment, the boundary 

% condition vector is

b = [1 1 1 1 1 9 '0' '0' '1' 'x.^2-y.^2']';

% Create a boundary condition matrix that 

% represents all of the boundary segments.

b = repmat(b,1,4);          

                    

% Use ASSEMB to find the boundary condition 

% matrices. Since there are only Dirichlet 

% boundary conditions, Q and G are empty.

[Q,G,H,R] = assemb(b,p,e)

3 Run the function assemb_example.m.

The function returns the four boundary condition matrices.

Q =

   All zero sparse: 41-by-41

G =

   All zero sparse: 41-by-1

H =

   (1,1)        1

   (2,2)        1

   (3,3)        1

   (4,4)        1

   (5,5)        1

   (6,6)        1

   (7,7)        1

   (8,8)        1

   (9,9)        1

  (10,10)       1

  (11,11)       1

  (12,12)       1

  (13,13)       1
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  (14,14)       1

  (15,15)       1

  (16,16)       1

R =

   (1,1)       1.0000

   (2,1)      -1.0000

   (3,1)       1.0000

   (4,1)      -1.0000

   (5,1)       0.0000

   (6,1)      -0.0000

   (7,1)       0.0000

   (8,1)      -0.0000

   (9,1)       0.7071

  (10,1)      -0.7071

  (11,1)      -0.7071

  (12,1)       0.7071

  (13,1)       0.7071

  (14,1)      -0.7071

  (15,1)      -0.7071

  (16,1)       0.7071

Q and G are all zero sparse matrices because the problem has only Dirichlet boundary
conditions and neither generalized Neumann nor mixed boundary conditions apply.

More About
• “Solve PDEs with Constant Boundary Conditions” on page 2-133
• “Solve PDEs with Nonconstant Boundary Conditions” on page 2-140
• “Boundary Conditions for Scalar PDE” on page 2-148
• “Boundary Conditions for PDE Systems” on page 2-153
• “Solve Problems Using PDEModel Objects” on page 2-11

See Also
assempde

Introduced before R2006a
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assempde
Assemble stiffness matrix and right side of PDE problem

Syntax
u = assempde(model,c,a,f)

u = assempde(model,c,a,f,u0)

u = assempde(model,c,a,f,u0,time)

u = assempde(model,c,a,f,time)

u = assempde(b,p,e,t,c,a,f)

u = assempde(b,p,e,t,c,a,f,u0)

u = assempde(b,p,e,t,c,a,f,u0,time)

u = assempde(b,p,e,t,c,a,f,time)

[K,F] = assempde(model,c,a,f)

[K,F] = assempde(model,c,a,f,u0)

[K,F] = assempde(model,c,a,f,u0,time)

[K,F] = assempde(model,c,a,f,time)

[K,F] = assempde(b,p,e,t,c,a,f)

[K,F] = assempde(b,p,e,t,c,a,f,u0)

[K,F] = assempde(b,p,e,t,c,a,f,u0,time)

[K,F] = assempde(b,p,e,t,c,a,f,u0,time,sdl)

[K,F] = assempde(b,p,e,t,c,a,f,time)

[K,F] = assempde(b,p,e,t,c,a,f,time,sdl)
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[K,F,B,ud] = assempde(model,c,a,f)

[K,F,B,ud] = assempde(model,c,a,f,u0)

[K,F,B,ud] = assempde(model,c,a,f,u0,time)

[K,F,B,ud] = assempde(model,c,a,f,time)

[K,F,B,ud] = assempde(b,p,e,t,c,a,f)

[K,F,B,ud] = assempde(b,p,e,t,c,a,f,u0)

[K,F,B,ud] = assempde(b,p,e,t,c,a,f,u0,time)

[K,F,B,ud] = assempde(b,p,e,t,c,a,f,time)

[K,M,F,Q,G,H,R] = assempde(model,c,a,f)

[K,M,F,Q,G,H,R] = assempde(model,c,a,f,u0)

[K,M,F,Q,G,H,R] = assempde(model,c,a,f,u0,time)

[K,M,F,Q,G,H,R] = assempde(model,c,a,f,u0,time,sdl)

[K,M,F,Q,G,H,R] = assempde(model,c,a,f,time)

[K,M,F,Q,G,H,R] = assempde(model,c,a,f,time,sdl)

[K,M,F,Q,G,H,R] = assempde(b,p,e,t,c,a,f)

[K,M,F,Q,G,H,R] = assempde(b,p,e,t,c,a,f,u0)

[K,M,F,Q,G,H,R] = assempde(b,p,e,t,c,a,f,u0,time)

[K,M,F,Q,G,H,R] = assempde(b,p,e,t,c,a,f,u0,time,sdl)

[K,M,F,Q,G,H,R] = assempde(b,p,e,t,c,a,f,time)

[K,M,F,Q,G,H,R] = assempde(b,p,e,t,c,a,f,time,sdl)

u = assempde(K,M,F,Q,G,H,R)

[K1,F1] = assempde(K,M,F,Q,G,H,R)
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[K1,F1,B,ud] = assempde(K,M,F,Q,G,H,R)

Description

assempde is the basic Partial Differential Equation Toolbox function. It assembles
a PDE problem by using the FEM formulation described in “Elliptic Equations”. The
command assempde assembles the scalar PDE problem

-— ◊ —( ) + =c u au f ,

for (x,y) ∊ Ω, or the system PDE problem

-— ◊ ƒ—( ) + =c u au f .

The command can optionally produce a solution to the PDE problem.

For the scalar case the solution vector u is represented as a column vector of solution
values at the corresponding node points from p. For a system of dimension N with np
node points, the first np values of u describe the first component of u, the following np
values of u describe the second component of u, and so on. Thus, the components of u are
placed in the vector u as N blocks of node point values.

model is a PDEModel object that incorporates the number of equations, geometry, mesh,
and boundary conditions.

u = assempde(b,p,e,t,c,a,f) assembles and solves the PDE problem using the
finite element method. The [p,e,t] arguments are the 2-D mesh data (see “Mesh Data
for [p,e,t] Triples: 2-D” on page 2-161).

b describes the boundary conditions of the PDE problem. For the recommended way
of specifying boundary conditions, see “Specify Boundary Conditions Objects” on page
2-127. For all methods of specifying boundary conditions, see “Forms of Boundary
Condition Specification” on page 2-124.

[K,F] = assempde(b,p,e,t,c,a,f) assembles the PDE problem by approximating
the Dirichlet boundary condition with stiff springs (see “Systems of PDEs” on page
5-13 for details). K and F are the stiffness matrix and right-hand side, respectively. The
solution to the FEM formulation of the PDE problem is u = K\F.
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[K,F,B,ud] = assempde(b,p,e,t,c,a,f) assembles the PDE problem by
eliminating the Dirichlet boundary conditions from the system of linear equations. u1
= K\F returns the solution on the non-Dirichlet points. The solution to the full PDE
problem can be obtained as the MATLAB expression u = B*u1+ud.

[K,M,F,Q,G,H,R] = assempde(b,p,e,t,c,a,f) gives a split representation of the
PDE problem.

u = assempde(K,M,F,Q,G,H,R) collapses the split representation into the single
matrix/vector form, and then solves the PDE problem by eliminating the Dirichlet
boundary conditions from the system of linear equations.

[K1,F1] = assempde(K,M,F,Q,G,H,R) collapses the split representation into the
single matrix/vector form, by fixing the Dirichlet boundary condition with large spring
constants.

[K1,F1,B,ud] = assempde(K,M,F,Q,G,H,R) collapses the split representation into
the single matrix/vector form by eliminating the Dirichlet boundary conditions from the
system of linear equations.

The optional list of subdomain labels, sdl, restricts the assembly process to the
subdomains denoted by the labels in the list. You cannot include a sdl argument in a
model with 3-D geometry. The optional input arguments u0 and time are used for the
nonlinear solver and time stepping algorithms, respectively. The tentative input solution
vector u0 has the same format as u.

Examples

3-D Elliptic Problem

Solve a 3-D elliptic PDE using a PDE model.

Create a PDE model container, import a 3-D geometry description, and view the
geometry.

model = createpde;

importGeometry(model,'Block.stl');

h = pdegplot(model,'FaceLabels','on');

h(1).FaceAlpha = 0.5;
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Set zero Dirichlet conditions on faces 1 through 4 (the edges). Set Neumann conditions
with g = –1 on face 6 and g = 1 on face 5.

applyBoundaryCondition(model,'Face',1:4,'u',0);

applyBoundaryCondition(model,'Face',6,'g',-1);

applyBoundaryCondition(model,'Face',5,'g',1);

Set coefficients c = 1, a = 0, and f = 0.1.

c = 1;

a = 0;

f = 0.1;

Create a mesh and solve the problem.
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generateMesh(model);

u = assempde(model,c,a,f);

Plot the solution on the surface.

pdeplot3D(model,'colormapdata',u);

L-Shaped Membrane

Solve the equation Δu = 1 on the geometry defined by the L-shaped membrane. Use
Dirichlet boundary conditions u = 0 on ∂Ω. Finally plot the solution.

[p,e,t] = initmesh('lshapeg','Hmax',0.2); 
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[p,e,t] = refinemesh('lshapeg',p,e,t); 

u = assempde('lshapeb',p,e,t,1,0,1); 

pdesurf(p,t,u)

Poisson’s Equation with Point Source

Consider Poisson's equation on the unit circle with unit point source at the origin. The
exact solution

u r= -
1

2p

log( )

is known for this problem. We define the function f = circlef(p,t,u,time) for
computing the right-hand side. circlef returns zero for all triangles except for the
one located at the origin; for that triangle it returns 1/a, where a is the triangle area.
pdedemo7 executes an adaptive solution for this problem.
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More About
• “Solve Problems Using PDEModel Objects” on page 2-11
• “Scalar PDE Coefficients” on page 2-59

../examples/poisson-s-equation-with-point-source-and-adaptive-mesh-refinement.html
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• “Coefficients for Systems of PDEs” on page 2-86
• “Specify 3-D PDE Coefficients in Function Form” on page 2-70
• “Boundary Conditions for Scalar PDE” on page 2-148
• “Boundary Conditions for PDE Systems” on page 2-153

See Also
assema | assemb | initmesh | refinemesh

Introduced before R2006a
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BoundaryCondition Properties
Boundary condition for PDE model

A BoundaryCondition object specifies one type of PDE boundary condition on a set
of geometry boundaries. A PDEModel object contains a vector of BoundaryCondition
objects in its BoundaryConditions property.

Specify boundary conditions for your model using the applyBoundaryCondition
function.

RegionType — Boundary type
'Face' for 3-D geometry | 'Edge' for 2-D geometry

Boundary type, specified as 'Face' for 3-D geometry or 'Edge' for 2-D geometry.

Example: applyBoundaryCondition(model,'Face',3,'u',0)

Data Types: char

RegionID — Boundary ID
vector of positive integers

Boundary ID, specified as a vector of positive integers. To determine which ID
corresponds to which portion of the geometry boundary, use the pdegplot function. Set
the 'FaceLabels' (3-D) or 'EdgeLabels' (2-D) name-value pair set to 'on'.

Example: applyBoundaryCondition(model,'Face',3:6,'u',0)

Data Types: double

r — Dirichlet condition h*u = r
zeros(N,1) (default) | vector with N elements | function handle

Dirichlet condition h*u = r, specified as a vector with N elements or as a function
handle. N is the number of PDEs in the system. See “Systems of PDEs” on page 2-58.
For the syntax of the function handle form of r, see “Specify Nonconstant Boundary
Conditions” on page 2-138.
Example: 'r',[0;4;-1]

Data Types: double | function_handle
Complex Number Support: Yes
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h — Dirichlet condition h*u = r
eye(N) (default) | N-by-N matrix | vector with N^2 elements | function handle

Dirichlet condition h*u = r, specified as an N-by-N matrix, as a vector with N^2
elements, or as a function handle. N is the number of PDEs in the system. See “Systems
of PDEs” on page 2-58. For the syntax of the function handle form of h, see “Specify
Nonconstant Boundary Conditions” on page 2-138.
Example: 'h',[2,1;1,2]

Data Types: double | function_handle
Complex Number Support: Yes

g — Generalized Neumann condition n·(c×∇u) + qu = g
zeros(N,1) (default) | vector with N elements | function handle

Generalized Neumann condition n·(c×∇u) + qu = g, specified as a vector with N
elements or as a function handle. N is the number of PDEs in the system. See “Systems
of PDEs” on page 2-58. For the syntax of the function handle form of g, see “Specify
Nonconstant Boundary Conditions” on page 2-138.
Example: 'g',[3;2;-1]

Data Types: double | function_handle
Complex Number Support: Yes

q — Generalized Neumann condition n·(c×∇u) + qu = g
zeros(N) (default) | N-by-N matrix | vector with N^2 elements | function handle

Generalized Neumann condition n·(c×∇u) + qu = g, specified as an N-by-N matrix,
as a vector with N^2 elements, or as a function handle. N is the number of PDEs in the
system. See “Systems of PDEs” on page 2-58. For the syntax of the function handle form
of q, see “Specify Nonconstant Boundary Conditions” on page 2-138.

Example: 'q',eye(3)

Data Types: double | function_handle
Complex Number Support: Yes

u — Dirichlet conditions
zeros(N,1) (default) | vector of up to N elements | function handle

Dirichlet conditions, specified as a vector of up to N elements or as a function handle.
EquationIndex and u must have the same length. For the syntax of the function handle
form of u, see “Specify Nonconstant Boundary Conditions” on page 2-138.
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Example: applyBoundaryCondition(model,'Face',[2,4,11],'u',0)

Data Types: double
Complex Number Support: Yes

EquationIndex — Index of specified u components
1:N (default) | vector of integers with entries from 1 to N

Index of specified u components, specified as a vector of integers with entries from 1 to N.
EquationIndex and u must have the same length.

Example: applyBoundaryCondition(model,'Face',[2,4,11],'u',
[3,-1],'EquationIndex',[2,3])

Data Types: double

Vectorized — Vectorized function evaluation
'off' (default) | 'on'

Vectorized function evaluation, specified as 'on' or 'off'. This evaluation applies when
you pass a function handle as an argument. To save time in function handle evaluation,
specify 'on', assuming that your function handle computes in a vectorized fashion.
See “Vectorization”. For details of this evaluation, see “Specify Nonconstant Boundary
Conditions” on page 2-138.
Example: applyBoundaryCondition(model,'Face',
[2,4,11],'u',@ucalculator,'Vectorized','on')

Data Types: char

See Also
applyBoundaryCondition | PDEModel

Related Examples
• “Solve PDEs with Constant Boundary Conditions” on page 2-133
• “Solve PDEs with Nonconstant Boundary Conditions” on page 2-140

More About
• “Solve Problems Using PDEModel Objects” on page 2-11
• “Specify Constant Boundary Conditions” on page 2-129



6 Functions — Alphabetical List

6-38

• “Specify Nonconstant Boundary Conditions” on page 2-138

Introduced in R2015a
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createpde
Create PDE model

Syntax

model = createpde(N)

model = createpde

Description

model = createpde(N) returns a PDE model container for a system of N equations.

model = createpde returns a PDE model for one equation, meaning a scalar PDE.

Examples

Create a PDE Model

Create a model for a system of three equations.

model = createpde(3)

model = 

  PDEModel with properties:

         PDESystemSize: 3

              Geometry: []

    BoundaryConditions: []

                  Mesh: []

Create a Scalar PDE Model

Create a model for a single (scalar) PDE.

model = createpde

model = 
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  PDEModel with properties:

         PDESystemSize: 1

              Geometry: []

    BoundaryConditions: []

                  Mesh: []

• “Solve Problems Using PDEModel Objects” on page 2-11

Input Arguments

N — Number of equations
1 (default) | positive integer

Number of equations, specified as a positive integer.
Example: model = createpde(3);

Data Types: double

Output Arguments

model — PDE model container
PDEModel object

PDE model container, returned as a PDEModel object.

See Also
PDEModel

Introduced in R2015a
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csgchk
Check validity of Geometry Description matrix

Syntax

gstat = csgchk(gd,xlim,ylim)

gstat = csgchk(gd)

Description

gstat = csgchk(gd,xlim,ylim) checks if the solid objects in the Geometry
Description matrix gd are valid, given optional real numbers xlim and ylim as current
length of the x- and y-axis, and using a special format for polygons. For a polygon, the
last vertex coordinate can be equal to the first one, to indicate a closed polygon. If xlim
and ylim are specified and if the first and the last vertices are not equal, the polygon
is considered as closed if these vertices are within a certain “closing distance.” These
optional input arguments are meant to be used only when calling csgchk from the PDE
app.

gstat = csgchk(gd) is identical to the preceding call, except for using the same
format of gd that is used by decsg. This call is recommended when using csgchk as a
command-line function.

gstat is a row vector of integers that indicates the validity status of the corresponding
solid objects, i.e., columns, in gd.

For a circle solid, gstat = 0 indicates that the circle has a positive radius, 1 indicates a
nonpositive radius, and 2 indicates that the circle is not unique.

For a polygon, gstat = 0 indicates that the polygon is closed and does not intersect
itself, i.e., it has a well-defined, unique interior region. 1 indicates an open and non-self-
intersecting polygon, 2 indicates a closed and self-intersecting polygon, and 3 indicates
an open and self-intersecting polygon.

For a rectangle solid, gstat is identical to that of a polygon. This is so because a
rectangle is considered as a polygon by csgchk.
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For an ellipse solid, gstat = 0 indicates that the ellipse has positive semiaxes, 1
indicates that at least one of the semiaxes is nonpositive, and 2 indicates that the ellipse
is not unique.

If gstat consists of zero entries only, then gd is valid and can be used as input argument
by decsg.

See Also
decsg
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csgdel
Delete borders between minimal regions

Syntax

[dl1,bt1] = csgdel(dl,bt,bl)

[dl1,bt1] = csgdel(dl,bt)

Description

[dl1,bt1] = csgdel(dl,bt,bl) deletes the border segments in the list bl. If
the consistency of the Decomposed Geometry matrix is not preserved by deleting the
elements in the list bl, additional border segments are deleted. Boundary segments
cannot be deleted.

For an explanation of the concepts or border segments, boundary segments, and minimal
regions, see decsg.

dl and dl1 are Decomposed Geometry matrices. For a description of the Decomposed
Geometry matrix, see decsg. The format of the Boolean tables bt and bt1 is also
described in the entry on decsg.

[dl1,bt1] = csgdel(dl,bt) deletes all border segments.

See Also
csgchk | decsg
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decsg
Decompose Constructive Solid Geometry into minimal regions

Syntax

dl = decsg(gd,sf,ns)

dl = decsg(gd)

[dl,bt] = decsg(gd)

[dl,bt] = decsg(gd,sf,ns)

[dl,bt,dl1,bt1,msb] = decsg(gd)

[dl,bt,dl1,bt1,msb] = decsg(gd,sf,ns)

Description

This function analyzes the Constructive Solid Geometry model (CSG model) that you
draw. It analyzes the CSG model, constructs a set of disjoint minimal regions, bounded
by boundary segments and border segments, and optionally evaluates a set formula
in terms of the objects in the CSG model. We often refer to the set of minimal regions
as the decomposed geometry. The decomposed geometry makes it possible for other
Partial Differential Equation Toolbox functions to “understand” the geometry you specify.
For plotting purposes a second set of minimal regions with a connected boundary is
constructed.

The PDE app uses decsg for many purposes. Each time a new solid object is drawn
or changed, the PDE app calls decsg to be able to draw the solid objects and minimal
regions correctly. The Delaunay triangulation algorithm, initmesh, also uses the output
of decsg to generate an initial mesh.

dl = decsg(gd,sf,ns) decomposes the CSG model gd into the decomposed geometry
dl. The CSG model is represented by the Geometry Description matrix, and the
decomposed geometry is represented by the Decomposed Geometry matrix. decsg
returns the minimal regions that evaluate to true for the set formula sf. The Name
Space matrix ns is a text matrix that relates the columns in gd to variable names in sf.

dl = decsg(gd) returns all minimal regions. (The same as letting sf correspond to the
union of all objects in gd.)
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[dl,bt] = decsg(gd) and [dl,bt] = decsg(gd,sf,ns) additionally return a
Boolean table that relates the original solid objects to the minimal regions. A column in
bt corresponds to the column with the same index in gd. A row in bt corresponds to a
minimal region index.

[dl,bt,dl1,bt1,msb] = decsg(gd) and [dl,bt,dl1,bt1,msb] =
decsg(gd,sf,ns) return a second set of minimal regions dl1 with a corresponding
Boolean table bt1. This second set of minimal regions all have a connected boundary.
These minimal regions can be plotted by using MATLAB patch objects. The second
set of minimal regions have borders that may not have been induced by the original
solid objects. This occurs when two or more groups of solid objects have nonintersecting
boundaries.

The calling sequences additionally return a sequence msb of drawing commands for
each second minimal region. The first row contains the number of edge segment that
bounds the minimal region. The additional rows contain the sequence of edge segments
from the Decomposed Geometry matrix that constitutes the bound. If the index edge
segment label is greater than the total number of edge segments, it indicates that the
total number of edge segments should be subtracted from the contents to get the edge
segment label number and the drawing direction is opposite to the one given by the
Decomposed Geometry matrix.

Geometry Description Matrix

The Geometry Description matrix gd describes the CSG model that you draw using
the PDE app. The current Geometry Description matrix can be made available to the
MATLAB workspace by selecting the Export Geometry Description, Set Formula,
Labels option from the Draw menu in the PDE app.

Each column in the Geometry Description matrix corresponds to an object in the CSG
model. Four types of solid objects are supported. The object type is specified in row 1:

• For the circle solid, row one contains 1, and the second and third row contain the
center x- and y-coordinates, respectively. Row four contains the radius of the circle.

• For a polygon solid, row one contains 2, and the second row contains the number, n,
of line segments in the boundary of the polygon. The following n rows contain the x-
coordinates of the starting points of the edges, and the following n rows contain the y-
coordinates of the starting points of the edges.

• For a rectangle solid, row one contains 3. The format is otherwise identical to the
polygon format.
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• For an ellipse solid, row one contains 4, the second and third row contains the center
x- and y-coordinates, respectively. Rows four and five contain the semiaxes of the
ellipse. The rotational angle (in radians) of the ellipse is stored in row six.

Set Formula

sf contains a set formula expressed with the set of variables listed in ns. The operators
`+', `*', and `-' correspond to the set operations union, intersection, and set difference,
respectively. The precedence of the operators `+' and `*' is the same. `-' has higher
precedence. The precedence can be controlled with parentheses.

Name Space Matrix

The Name Space matrix ns relates the columns in gd to variable names in sf. Each
column in ns contains a sequence of characters, padded with spaces. Each such character
column assigns a name to the corresponding geometric object in gd. This way we can
refer to a specific object in gd in the set formula sf.

Decomposed Geometry Matrix

The Decomposed Geometry matrix dl contains a representation of the decomposed
geometry in terms of disjointed minimal regions that have been constructed by the
decsg algorithm. Each edge segment of the minimal regions corresponds to a column in
dl. We refer to edge segments between minimal regions as border segments and outer
boundaries as boundary segments. In each such column rows two and three contain the
starting and ending x-coordinate, and rows four and five the corresponding y-coordinate.
Rows six and seven contain left and right minimal region labels with respect to the
direction induced by the start and end points (counter clockwise direction on circle and
ellipse segments). There are three types of possible edge segments in a minimal region:

• For circle edge segments row one is 1. Rows eight and nine contain the coordinates of
the center of the circle. Row 10 contains the radius.

• For line edge segments row one is 2.
• For ellipse edge segments row one is 4. Rows eight and nine contain the coordinates

of the center of the ellipse. Rows 10 and 11 contain the semiaxes of the ellipse,
respectively. The rotational angle of the ellipse is stored in row 12.
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Examples

The following command sequence starts the PDE app and draws a unit circle and a unit
square.

pdecirc(0,0,1) 

pderect([0 1 0 1])

Insert the set formula C1-SQ1. Export the Geometry Description matrix, set formula,
and Name Space matrix to the MATLAB workspace by selecting the Export Geometry
Description option from the Draw menu. Then type

[dl,bt] = decsg(gd,sf,ns);  

dl =

     2.0000   2.0000    1.0000    1.0000    1.0000

          0        0   -1.0000    0.0000    0.0000

     1.0000        0    0.0000    1.0000   -1.0000

          0   1.0000   -0.0000   -1.0000    1.0000

          0        0   -1.0000         0   -0.0000

          0        0    1.0000    1.0000    1.0000

     1.0000   1.0000         0         0         0

          0        0         0         0         0

          0        0         0         0         0

          0        0    1.0000    1.0000    1.0000

 bt =

     1        0 

There is one minimal region, with five edge segments, three circle edge segments, and
two line edge segments.

Diagnostics

NaN is returned if the set formula sf cannot be evaluated.

More About

Algorithms

The algorithm consists of the following steps:
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1 Determine the intersection points between the borders of the model objects.
2 For each intersection point, sort the incoming edge segments on angle and curvature.
3 Determine if the induced graph is connected. If not, add some appropriate edges, and

redo algorithm from step 1.
4 Cycle through edge segments of minimal regions.
5 For each original region, determine minimal regions inside it.
6 Organize output and remove the additional edges.

Note The input CSG model is not checked for correctness. It is assumed that no circles or
ellipses are identical or degenerated and that no lines have zero length. Polygons must
not be self-intersecting. Use the function csgchk to check the CSG model.

• “Create CSG Geometry at the Command Line” on page 2-16

See Also
csgchk | csgdel | pdecirc | pdeellip | pdepoly | pderect | pdetool | wbound
| wgeom
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DiscreteGeometry Properties
3-D geometry description

DiscreteGeometry describes 3-D geometry in the form of an object. A PDEModel
object has a Geometry property. For 3-D geometry, the Geometry property is a
DiscreteGeometry object.

Specify a 3-D geometry for your model using the importGeometry function.

NumEdges — Number of geometry edges
positive integer

Number of geometry edges, returned as a positive integer.
Data Types: double

NumFaces — Number of geometry faces
positive integer

Number of geometry faces, returned as a positive integer.
Data Types: double

NumVertices — Number of geometry vertices
positive integer

Number of geometry vertices, returned as a positive integer.
Data Types: double

See Also
importGeometry | PDEModel

More About
• “Solve Problems Using PDEModel Objects” on page 2-11

Introduced in R2015a
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dstidst
Discrete sine transform

Syntax

y = dst(x)

y = dst(x,n)

x = idst(y)

x = idst(y,n)

Description

The dst function implements the following equation:
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y = dst(x) computes the discrete sine transform of the columns of x. For best
performance speed, the number of rows in x should be 2m – 1, for some integer m.

y = dst(x,n) pads or truncates the vector x to length n before transforming.

If x is a matrix, the dst operation is applied to each column.

The idst function implements the following equation:
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x = idst(y) calculates the inverse discrete sine transform of the columns of y. For best
performance speed, the number of rows in y should be 2m – 1, for some integer m.

x = idst(y,n) pads or truncates the vector y to length n before transforming.

If y is a matrix, the idst operation is applied to each column.
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For more information about this algorithm, see “Solve Poisson's Equation on a Grid” on
page 3-124.

See Also
poiasma | poiindex | poisolv
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evaluate
Interpolate data to selected locations

Syntax

uOut = evaluate(F,pOut)

uOut = evaluate(F,x,y)

uOut = evaluate(F,x,y,z)

Description

uOut = evaluate(F,pOut) returns the interpolated values from the interpolant F at
the points pOut.

Note: If a query point is outside the mesh, evaluate returns NaN for that point.

uOut = evaluate(F,x,y) returns the interpolated values from the interpolant F at
the points [x(k),y(k)], for k from 1 through numel(x). This syntax applies to 2-D
geometry.

uOut = evaluate(F,x,y,z) returns the interpolated values from the interpolant F at
the points [x(k),y(k),z(k)], for k from 1 through numel(x). This syntax applies to
3-D geometry.

Examples

Interpolate to a matrix of values

This example shows how to interpolate a solution to a 1-D problem using a pOut matrix
of values.

Solve the equation  on the unit disk with zero Dirichlet conditions.

g0 = [1;0;0;1]; % circle centered at (0,0) with radius 1

sf = 'C1';
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g = decsg(g0,sf,sf'); % decomposed geometry matrix

problem = allzerobc(g); % zero Dirichlet conditions

[p,e,t] = initmesh(g);

c = 1;

a = 0;

f = 1;

u = assempde(problem,p,e,t,c,a,f); % solve the PDE

Construct an interpolator for the solution.

F = pdeInterpolant(p,t,u);

Generate a random set of coordinates in the unit square. Evaluate the interpolated
solution at the random points.

rng default % for reproducibility

pOut = rand(2,25); % 25 numbers between 0 and 1

uOut = evaluate(F,pOut);

numNaN = sum(isnan(uOut))

numNaN =

     9

uOut contains some NaN entries because some points in pOut are outside of the unit disk.

Interpolate to x, y values

This example shows how to interpolate a solution to a 1-D problem using x, y values.

Solve the equation  on the unit disk with zero Dirichlet conditions.

g0 = [1;0;0;1]; % circle centered at (0,0) with radius 1

sf = 'C1';

g = decsg(g0,sf,sf'); % decomposed geometry matrix

problem = allzerobc(g); % zero Dirichlet conditions

[p,e,t] = initmesh(g);

c = 1;

a = 0;

f = 1;

u = assempde(problem,p,e,t,c,a,f); % solve the PDE

Construct an interpolator for the solution.

F = pdeInterpolant(p,t,u); % create the interpolant
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Evaluate the interpolated solution at grid points in the unit square with spacing 0.2.

[x,y] = meshgrid(0:0.2:1);

uOut = evaluate(F,x,y);

numNaN = sum(isnan(uOut))

numNaN =

    12

uOut contains some NaN entries because some points in the unit square are outside of the
unit disk.

Interpolate a solution with multiple components

This example shows how to interpolate the solution to a problem with N = 3 components.

Solve the system of equations  with Dirichlet boundary conditions on the unit
disk, where

g0 = [1;0;0;1]; % circle centered at (0,0) with radius 1

sf = 'C1';

g = decsg(g0,sf,sf'); % decomposed geometry matrix

problem = allzerobc(g,3); % zero Dirichlet conditions, 3 components

[p,e,t] = initmesh(g);

c = 1;

a = 0;

f = char('sin(x) + cos(y)','cosh(x.*y)','x.*y./(1+x.^2+y.^2)');

u = assempde(problem,p,e,t,c,a,f); % solve the PDE

Construct an interpolant for the solution.

F = pdeInterpolant(p,t,u); % create the interpolant

Interpolate the solution at a circle.

s = linspace(0,2*pi);

x = 0.5 + 0.4*cos(s);

y = 0.4*sin(s);

uOut = evaluate(F,x,y);
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Plot the three solution components.

npts = length(x);

plot3(x,y,uOut(1:npts),'b')

hold on

plot3(x,y,uOut(npts+1:2*npts),'k')

plot3(x,y,uOut(2*npts+1:end),'r')

hold off

view(35,35)

Interpolate a time-varying solution

This example shows how to interpolate a solution that depends on time.

Solve the equation



6 Functions — Alphabetical List

6-56

on the unit disk with zero Dirichlet conditions and zero initial conditions. Solve at five
times from 0 to 1.

g0 = [1;0;0;1]; % circle centered at (0,0) with radius 1

sf = 'C1';

g = decsg(g0,sf,sf'); % decomposed geometry matrix

problem = allzerobc(g); % zero Dirichlet conditions

[p,e,t] = initmesh(g);

c = 1;

a = 0;

f = 1;

d = 1;

tlist = 0:1/4:1;

u = parabolic(0,tlist,problem,p,e,t,c,a,f,d);

52 successful steps

0 failed attempts

106 function evaluations

1 partial derivatives

13 LU decompositions

105 solutions of linear systems

Construct an interpolant for the solution.

F = pdeInterpolant(p,t,u);

Interpolate the solution at x = 0.1, y = -0.1, and all available times.

x = 0.1;

y = -0.1;

uOut = evaluate(F,x,y)

uOut =

         0    0.1809    0.2278    0.2388    0.2413

The solution starts at 0 at time 0, as it should. It grows to about 1/4 at time 1.

Interpolate to a Grid

This example shows how to interpolate an elliptic solution to a grid.
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Define and Solve the Problem

Use the built-in geometry functions to create an L-shaped region with zero Dirichlet
boundary conditions. Solve an elliptic PDE with coefficients , , , with zero
Dirichlet boundary conditions.

[p,e,t] = initmesh('lshapeg'); % Predefined geometry

u = assempde('lshapeb',p,e,t,1,0,1); % Predefined boundary condition

Create an Interpolant

Create an interpolant for the solution.

F = pdeInterpolant(p,t,u);

Create a Grid for the Solution

xgrid = -1:0.1:1;

ygrid = -1:0.2:1;

[X,Y] = meshgrid(xgrid,ygrid);

The resulting grid has some points that are outside the L-shaped region.

Evaluate the Solution On the Grid

uout = evaluate(F,X,Y);

The interpolated solution uout is a column vector. You can reshape it to match the size of
X or Y. This gives a matrix, like the output of the tri2grid function.

Z = reshape(uout,size(X));

Input Arguments

F — Interpolant
output of pdeInterpolant

Interpolant, specified as the output of pdeInterpolant.

Example: F = pdeInterpolant(p,t,u)

pOut — Query points
matrix with two or three rows
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Query points, specified as a matrix with two or three rows. The first row represents the x
component of the query points, the second row represents the y component, and, for 3-D
geometry, the third row represents the z component. evaluate computes the interpolant
at each column of pOut. In other words, evaluate interpolates at the points pOut(:,k).

Example: pOut = [-1.5,0,1;
1,1,2.2]

Data Types: double

x — Query point component
vector or array

Query point component, specified as a vector or array. evaluate interpolates at either 2-
D points [x(k),y(k)] or at 3-D points [x(k),y(k),z(k)]. The x and y, and z arrays
must contain the same number of elements.

evaluate transforms query point components to the linear index representation, such as
x(:).

Example: x = -1:0.2:3

Data Types: double

y — Query point component
vector or array

Query point component, specified as a vector or array. evaluate interpolates at either 2-
D points [x(k),y(k)] or at 3-D points [x(k),y(k),z(k)].The x and y, and z arrays
must contain the same number of elements.

evaluate transforms query point components to the linear index representation, such as
y(:).

Example: y = -1:0.2:3

Data Types: double

z — Query point component
vector or array

Query point component, specified as a vector or array. evaluate interpolates at either 2-
D points [x(k),y(k)] or at 3-D points [x(k),y(k),z(k)].The x and y, and z arrays
must contain the same number of elements.
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evaluate transforms query point components to the linear index representation, such as
z(:).

Example: z = -1:0.2:3

Data Types: double

Output Arguments
uOut — Interpolated values
array

Interpolated values, returned as an array. uOut has the same number of columns as the
data u used in creating F. The number of rows of uOut is N times the number of query
points. N is the number of components in the training data u.

If a query point is outside the mesh, evaluate returns NaN for that point.

Alternative Functionality
pdeintrp interpolates from 2-D node data to the triangle midpoints.

More About
Element

An element is a basic unit in the finite-element method. For 2-D problems, an
element is a triangle t in the [p,e,t] “Mesh Data” on page 2-161 structure or in the
model.Mesh.Element property. For 3-D problems, an element is a tetrahedron with
either four or ten points. A four-point tetrahedron has its corners as the nodes. A ten-
point tetrahedron has its corners and also a point on each edge as the nodes. For a sketch
of the two tetrahedra, see “Mesh Data for [p,e,t] Triples: 3-D” on page 2-162.

The [p,e,t] data structure for an element t has the form [p1;p2;...;pn;sd], where
the p values are indexes of the nodes (points p in t), and sd is the subdomain number.

Algorithms

For each point where a solution is requested (pOut), there are two steps in the
interpolation process. First, the element containing the point must be located and second,
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interpolation within that element must be performed using the element shape functions
and the values of the solution at the element’s node points.
• “Mesh Data” on page 2-161

See Also
pdeInterpolant
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FEMesh Properties
Mesh object

An FEMesh object contains a description of the finite element mesh. A PDEModel
container has an FEMesh object in its Mesh property.

Generate a mesh for your model using the generateMesh function.

Nodes — Mesh nodes
matrix

Mesh nodes, returned as a matrix. Nodes is a D-by-Nn matrix, where D is the number of
geometry dimensions (2 or 3), and Nn is the number of nodes in the mesh. Each column of
Nodes contains the x, y, and in 3-D, z coordinates for that mesh node.

2-D meshes have nodes at the mesh triangle corners. 3-D meshes have nodes at
tetrahedral vertices, and the 'quadratic' elements have additional nodes at the center
points of each edge. See “Mesh Data for [p,e,t] Triples: 3-D” on page 2-162.
Data Types: double

Elements — Mesh elements
matrix

Mesh elements, returned as an M-by-Ne matrix, where Ne is the number of elements in
the mesh, and M is:

• 3 for 2-D geometry
• 4 for 3-D geometry with 'linear' GeometricOrder
• 10 for 3-D geometry with 'quadratic' GeometricOrder

Each column in Elements contains the indexes of the nodes for that mesh element.

Data Types: double

MaxElementSize — Target maximum mesh element size
positive real number

Target maximum mesh element size, returned as a positive real number. The maximum
mesh element size is the length of the longest edge in the mesh. The generateMesh
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Hmax name-value pair sets the target maximum size at the time it creates the mesh.
generateMesh can occasionally create a mesh with some elements that exceed
MaxElementSize by a few percent.

Data Types: double

MinElementSize — Target minimum mesh element size
positive real number

Target minimum mesh element size, returned as a positive real number. The minimum
mesh element size is the length of the shortest edge in the mesh.

• For a 2-D mesh, MinElementSize is the minimum mesh element size.
• For a 3-D mesh, the generateMesh Hmin name-value pair sets the target minimum

size the at the time it creates the mesh. generateMesh can occasionally create a
mesh with some elements that are a few percent smaller than MinElementSize.

Data Types: double

GeometricOrder — Element polynomial order
'linear' | 'quadratic'

Element polynomial order, returned as 'linear' or 'quadratic'. In 2-D geometry,
elements are 'linear'. In 3-D geometry, elements can be either type. 'linear' and
'quadratic' mesh elements in 3-D geometry have nodes at tetrahedral vertices, and
the 'quadratic' elements have additional nodes at the center points of each edge. See
“Mesh Data for [p,e,t] Triples: 3-D” on page 2-162.
Data Types: double

See Also
generateMesh | meshToPet | PDEModel

More About
• “Solve Problems Using PDEModel Objects” on page 2-11
• “Finite Element Basis for 3-D” on page 5-10
• “Mesh Data” on page 2-161

Introduced in R2015a
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generateMesh
Create triangular or tetrahedral mesh

Syntax

generateMesh(model)

generateMesh(model,Name,Value)

mesh = generateMesh( ___ )

Description

generateMesh(model) creates and includes a mesh in the model object. model must
contain geometry. To include 2-D geometry in a model, use geometryFromEdges. To
include 3-D geometry, use importGeometry.

generateMesh(model,Name,Value) modifies the mesh creation according to the
Name,Value arguments.

mesh = generateMesh( ___ ) additionally returns the mesh to the MATLAB
workspace, using any of the previous syntaxes.

Examples

Generate 2-D Mesh

Generate the default 2-D mesh for the L-shaped geometry.

Create a pde model and include the L-shaped geometry.

model = createpde(1);

geometryFromEdges(model,@lshapeg);

Generate the default mesh for the geometry.

generateMesh(model);
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View the mesh.

pdeplot(model)

Generate 3-D Mesh

Create a mesh that is finer than the default.

Create a pde model and include BracketTwoHoles geometry.

model = createpde(1);

importGeometry(model,'BracketTwoHoles.stl');

Generate a default mesh for comparison.
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generateMesh(model)

ans = 

  pdeFEMesh with properties:

             Nodes: [3x19274 double]

          Elements: [10x11479 double]

    MaxElementSize: 7.3485

    MinElementSize: 2.9394

    GeometricOrder: 'quadratic'

Create a mesh with target maximum element size 3 instead of the default 7.3485.

generateMesh(model,'Hmax',3)

ans = 

  pdeFEMesh with properties:

             Nodes: [3x186070 double]

          Elements: [10x122055 double]

    MaxElementSize: 3

    MinElementSize: 1.2000

    GeometricOrder: 'quadratic'

View the mesh.

pdeplot3D(model)
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Input Arguments

model — PDE model
PDEModel object

PDE model, specified as a PDEModel object.

Example: model = createpde(1)
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Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: generateMesh(model,'Hmax',0.25);

'Hmax' — Target maximum mesh edge length
positive real number

Target maximum mesh edge length, specified as a positive real number. Hmax is an
approximate upper bound on the mesh edge lengths. generateMesh can occasionally
create a mesh with some elements that exceed Hmax by a few percent. generateMesh
estimates the default value of Hmax from the geometry.

Example: generateMesh(model,'Hmax',0.25);

Data Types: double

'Hmin' — Target minimum mesh edge length
0 (default) | nonnegative real number

Target minimum mesh edge length, specified as a nonnegative real number. Applies to 3-
D geometry only.

Hmin is an approximate lower bound on the mesh edge lengths. generateMesh can
occasionally create a mesh with some elements that are a few percent smaller than Hmin.
generateMesh estimates the default value of Hmin from the geometry.

Example: generateMesh(model,'Hmin',0.05);

Data Types: double

'GeometricOrder' — Element type
'quadratic' for 3-D geometry, 'linear' for 2-D geometry (default) | 'linear' |
'quadratic'

Element type, specified as the string 'linear' or 'quadratic'. For 2-D geometry,
'linear' only.

In general, 3-D 'quadratic' elements produce more accurate solutions, but use more
memory. Override the default 'quadratic' only to save memory.
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Example: generateMesh(model,'GeometricOrder','linear');

Data Types: char

'Hgrad' — Mesh growth rate
1.3 (default) | scalar strictly between 1 and 2

Mesh growth rate, specified as a scalar strictly between 1 and 2. Applies to 2-D geometry
only.
Example: generateMesh(model,'Hgrad',1.5);

Data Types: double

'Box' — Preserve bounding box
'off' (default) | 'on'

Preserve bounding box, specified as 'off' or 'on'. Applies to 2-D geometry only.

Example: generateMesh(model,'Box','on');

Data Types: char

'Init' — Edge triangulation
'off' (default) | 'on'

Edge triangulation, specified as 'off' or 'on'. Applies to 2-D geometry only.

Example: generateMesh(model,'Init','on');

Data Types: char

'Jiggle' — Mesh quality improvement
'mean' (default) | 'on' | 'off' | 'minimum'

Mesh quality improvement, specified as 'mean', 'off', 'minimum', or 'on'. Applies to
2-D geometry only.

After creating the mesh, the meshing algorithm call jigglemesh, with the Opt name-
value pair set to the stated value. Exceptions: 'off' means do not call jigglemesh, and
'on' means call jigglemesh with Opt = 'off'.

Example: generateMesh(model,'Jiggle','on');

Data Types: char
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'JiggleIter' — Maximum jiggle iterations
10 (default) | positive integer

Maximum jiggle iterations, specified as a positive integer. Applies to 2-D geometry only.
Example: generateMesh(model,'JiggleIter',5);

Data Types: double

'MesherVersion' — Meshing algorithm
'preR2013a' (default) | 'R2013a'

Meshing algorithm, specified as 'preR2013a' or 'R2013a'. Applies to 2-D geometry
only.
Example: generateMesh(model,'MesherVersion','R2013a');

Data Types: char

Output Arguments

mesh — Mesh description
FEMesh object

Mesh description, returned as an FEMesh object. mesh is the same as model.Mesh.

More About

Element

An element is a basic unit in the finite-element method. For 2-D problems, an
element is a triangle t in the [p,e,t] “Mesh Data” on page 2-161 structure or in the
model.Mesh.Element property. For 3-D problems, an element is a tetrahedron with
either four or ten points. A four-point tetrahedron has its corners as the nodes. A ten-
point tetrahedron has its corners and also a point on each edge as the nodes. For a sketch
of the two tetrahedra, see “Mesh Data for [p,e,t] Triples: 3-D” on page 2-162.

The [p,e,t] data structure for an element t has the form [p1;p2;...;pn;sd], where
the p values are indexes of the nodes (points p in t), and sd is the subdomain number.
• “Solve Problems Using PDEModel Objects” on page 2-11
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• “Finite Element Basis for 3-D” on page 5-10
• “Mesh Data” on page 2-161

See Also
FEMesh Properties | geometryFromEdges | importGeometry | initmesh |
PDEModel

Introduced in R2015a
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geometryFromEdges

Create 2-D geometry

Syntax

geometryFromEdges(model,g)

pg = geometryFromEdges(model,g)

Description

geometryFromEdges(model,g) adds the 2-D geometry described in g to the model
container.

pg = geometryFromEdges(model,g) additionally returns the geometry to the
Workspace.

Examples

Geometry from Decomposed Solid Geometry

Create a decomposed solid geometry model and include it in a PDE model.

Create a default scalar PDE model.

model = createpde;

Define a circle in a rectangle, place these in one matrix, and create a set formula that
subtracts the circle from the rectangle.

R1 = [3,4,-1,1,1,-1,0.5,0.5,-0.75,-0.75]';

C1 = [1,0.5,-0.25,0.25]';

C1 = [C1;zeros(length(R1) - length(C1),1)];

gm = [R1,C1];

sf = 'R1-C1';
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Create the geometry.

ns = char('R1','C1');

ns = ns';

g = decsg(gm,sf,ns);

Include the geometry in the model and plot it.

geometryFromEdges(model,g);

pdegplot(model,'EdgeLabels','on')

axis equal

xlim([-1.1,1.1])

• “Solve PDEs with Constant Boundary Conditions” on page 2-133
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Input Arguments

model — PDE model
PDEModel object

PDE model, specified as a PDEModel object.

Example: model = createpde(1)

g — Geometry description
decomposed geometry matrix | name of a geometry function | handle to a geometry
function

Geometry description, specified as a decomposed geometry matrix, as the name of a
geometry function, or as a handle to a geometry function. For details, see “Create 2-D
Geometry” on page 2-14.
Example: geometryFromEdges(model,@circleg)

Data Types: double | char | function_handle

Output Arguments

pg — Geometry object
AnalyticGeometry object

Geometry object, returned as an AnalyticGeometry object. This object is stored in
model.Geometry.

More About
• “Solve Problems Using PDEModel Objects” on page 2-11
• “2-D Geometry”

See Also
AnalyticGeometry Properties | PDEModel

Introduced in R2015a
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hyperbolic
Solve hyperbolic PDE problem

Syntax
u1 = hyperbolic(u0,ut0,tlist,model,c,a,f,d)

u1 = hyperbolic(u0,ut0,tlist,model,c,a,f,d,rtol)

u1 = hyperbolic(u0,ut0,tlist,model,c,a,f,d,rtol,atol)

u1 = hyperbolic(u0,ut0,tlist,b,p,e,t,c,a,f,d)

u1 = hyperbolic(u0,ut0,tlist,b,p,e,t,c,a,f,d,rtol)

u1 = hyperbolic(u0,ut0,tlist,b,p,e,t,c,a,f,d,rtol,atol)

u1 = hyperbolic(u0,ut0,tlist,K,F,B,ud,M)

u1 = hyperbolic(u0,ut0,tlist,K,F,B,ud,M,rtol)

u1 = hyperbolic(u0,ut0,tlist,K,F,B,ud,M,rtol,atol)

u1 = hyperbolic(u0,ut0,tlist,K,F,B,ud,M, ___ ,'DampingMatrix',D)

u1 = hyperbolic( ___ ,'Stats','off')

Description

u1 = hyperbolic(u0,ut0,tlist,model,c,a,f,d) produces the solution to the
FEM formulation of the scalar PDE problem
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for (x,y) ∊ Ω, or the system PDE problem
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with geometry, mesh, and boundary conditions specified in model, initial value u0,
and initial derivative ut0. model is a PDEModel object. See “Solve Problems Using
PDEModel Objects” on page 2-11.

For a scalar PDE problem, each row in the solution matrix u1 is the solution at the
coordinates given by the corresponding column in the points p = model.Mesh.Nodes.
Each column in u1 is the solution at the time given by the corresponding item in tlist.
For a system of dimension N with np node points, the first np rows of u1 describe the first
component of u, the following np rows of u1 describe the second component of u, and so
on. Thus, the components of u are placed in the vector u as N blocks of node point rows.

The coefficients c, a, d, and f of the PDE problem can be given in a variety of ways.
The coefficients can depend on t, the time. They can also depend on u, the solution, and
on the components of the gradient of u, namely ux and uy. For a complete listing of all
options, see “Scalar PDE Coefficients” on page 2-59 and “Coefficients for Systems of
PDEs” on page 2-86.

atol and rtol are absolute and relative tolerances that are passed to the ODE solver.

u1 = hyperbolic(u0,ut0,tlist,b,p,e,t,c,a,f,d) solves the problem using a
mesh described by p, e, and t, with boundary conditions given by b.

b describes the boundary conditions of the PDE problem. For the recommended way
of specifying boundary conditions, see “Specify Boundary Conditions Objects” on page
2-127. For all methods of specifying boundary conditions, see “Forms of Boundary
Condition Specification” on page 2-124.

The geometry of the PDE problem is given by the mesh data p, e, and t. For details on
the mesh data representation, see initmesh.

u1 = hyperbolic(u0,ut0,tlist,K,F,B,ud,M) produces the solution to the ODE
problem
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d u

dt

K F

u Bu u

u
i

i

i d

2

2
·



6 Functions — Alphabetical List

6-76

with initial values for u being u0 and ut0. The K, F, B, ud, and M matrices have the same
meaning as in the assempde syntax using those matrices.

Add the DampingMatrix name-value pair at the end of any matrix-form syntax to solve
the damped equation

¢ + ¢ + =

= +

B MB
d u

dt

B DB
du

dt
K F

u Bu u

u
i i

i

i d

2

2
·

.

For a worked example using this syntax, see Dynamics of a Damped Cantilever Beam.

Add the Stats name-value pair at the end of any syntax to control the display of internal
ODE solver statistics. Valid values for Stats are 'off' and 'on' (default).

Examples

Solve the wave equation

∂

∂
=

2

2

u

t

uD

on a square geometry –1 ≤ x,y ≤ 1 (squareg), with Dirichlet boundary conditions u = 0 for
x = ±1, and Neumann boundary conditions

∂

∂
=

u

n

0

for y = ±1 (squareb3). Choose
u(0) = atan(cos(πx))

and

du

dt
x y( ) sin( )exp cos( ) .0 3= ( )p p

../examples/dynamics-of-a-damped-cantilever-beam.html
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Compute the solution at times 0, 1/6, 1/3, ..., 29/6, 5. Plot the first and last solutions.

model = createpde;

geometryFromEdges(model,@squareg);

pdegplot(model,'EdgeLabels','on');

axis equal

ylim([-1.1,1.1])

applyBoundaryCondition(model,'Edge',[2,4],'u',0);

generateMesh(model,'Hmax',0.1);

p = model.Mesh.Nodes;

x = p(1,:)'; 

y = p(2,:)'; 

u0 = atan(cos(pi/2*x)); 

ut0 = 3*sin(pi*x).*exp(cos(pi*y)); 

tlist = linspace(0,5,31);

c = 1;

a = 0;

f = 0;

d = 1;

u1 = hyperbolic(u0,ut0,tlist,model,c,a,f,d);

figure

pdeplot(model,'xydata',u1(:,1))

figure

pdeplot(model,'xydata',u1(:,31))
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The file pdedemo6 contains a complete example with animation.

Note In expressions for boundary conditions and PDE coefficients, the symbol t is used
to denote time. The variable t is often used to store the triangle matrix of the mesh. You
can use any variable to store the triangle matrix, but in the Partial Differential Equation
Toolbox expressions, t always denotes time.

More About
• “Solve Problems Using PDEModel Objects” on page 2-11
• “Scalar PDE Coefficients” on page 2-59

../examples/wave-equation-on-a-square-domain.html
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• “Coefficients for Systems of PDEs” on page 2-86
• “Specify 3-D PDE Coefficients in Function Form” on page 2-70
• “Boundary Conditions for Scalar PDE” on page 2-148
• “Boundary Conditions for PDE Systems” on page 2-153

See Also
assempde | parabolic

Introduced before R2006a
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importGeometry

Import 3-D geometry

Syntax

importGeometry(model,geometryfile)

gd = importGeometry(model,geometryfile)

Description

importGeometry(model,geometryfile) creates a 3-D geometry container from the
specified STL geometry file, and includes the geometry in the model container.

gd = importGeometry(model,geometryfile) additionally returns the geometry to
the MATLAB Workspace.

Examples

Import Geometry into PDE Container

Include imported geometry directly into a geometry container.

Create a PDEModel container for a system of three equations.

model = createpde(3);

Import geometry into the container.

importGeometry(model,'ForearmLink.stl');

View the geometry with face labels.

pdegplot(model,'FaceLabels','on')
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• “Create and View 3-D Geometry” on page 2-44

Input Arguments

model — PDE model
PDEModel object

PDE model, specified as a PDEModel object.

Example: model = createpde(1)

geometryfile — Path to STL file
string
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Path to STL file, specified as a string. The string ends with the file extension .stl or
.STL.

Example: '../geometries/Carburetor.stl'

Data Types: char

Output Arguments

gd — Geometry description
DiscreteGeometry object

Geometry description, returned as a DiscreteGeometry object.

More About
• “Solve Problems Using PDEModel Objects” on page 2-11

See Also
DiscreteGeometry Properties | pdegplot | PDEModel

Introduced in R2015a
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initmesh
Create initial 2-D mesh

Syntax
[p,e,t] = initmesh(g)

[p,e,t] = initmesh(g,'PropertyName',PropertyValue,...)

Description

[p,e,t] = initmesh(g) returns a triangular mesh using the 2-D geometry
specification g. initmesh uses a Delaunay triangulation algorithm. The mesh size is
determined from the shape of the geometry and from name-value pair settings.

g describes the geometry of the PDE problem. g can be a Decomposed Geometry matrix,
the name of a Geometry file, or a function handle to a Geometry file. For details, see “2-D
Geometry” or “3-D Geometry”.

The outputs p, e, and t are the mesh data.

In the Point matrix p, the first and second rows contain x- and y-coordinates of the points
in the mesh.

In the Edge matrix e, the first and second rows contain indices of the starting and ending
point, the third and fourth rows contain the starting and ending parameter values, the
fifth row contains the edge segment number, and the sixth and seventh row contain the
left- and right-hand side subdomain numbers.

In the Triangle matrix t, the first three rows contain indices to the corner points, given
in counter clockwise order, and the fourth row contains the subdomain number.

initmesh accepts the following name/value pairs.

Name Value Default Description

Hmax numeric estimate Maximum edge size
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Name Value Default Description

Hgrad numeric, strictly
between 1 and 2

1.3 Mesh growth rate

Box 'on' | 'off' 'off' Preserve bounding box
Init 'on' | 'off' 'off' Edge triangulation
Jiggle 'off' | 'mean'

| 'minimum' |

'on'

'mean' Call jigglemesh after
creating the mesh, with the
Opt name-value pair set to
the stated value. Exceptions:
'off' means do not call
jigglemesh, and 'on' means
call jigglemesh with Opt =
'off'.

JiggleIter numeric 10 Maximum iterations
MesherVersion 'R2013a' |

'preR2013a'

'preR2013a' Algorithm for generating
initial mesh

The Hmax property controls the size of the triangles on the mesh. initmesh creates a
mesh where triangle edge lengths are approximately Hmax or less.

The Hgrad property determines the mesh growth rate away from a small part of the
geometry. The default value is 1.3, i.e., a growth rate of 30%. Hgrad cannot be equal to
either of its bounds, 1 and 2.

Both the Box and Init property are related to the way the mesh algorithm works. By
turning on Box you can get a good idea of how the mesh generation algorithm works
within the bounding box. By turning on Init you can see the initial triangulation of the
boundaries. By using the command sequence

[p,e,t] = initmesh(dl,'hmax',inf,'init','on'); 

[uxy,tn,a2,a3] = tri2grid(p,t,zeros(size(p,2)),x,y); 

n = t(4,tn); 

you can determine the subdomain number n of the point xy. If the point is outside the
geometry, tn is NaN and the command n = t(4,tn) results in a failure.

The Jiggle property is used to control whether jiggling of the mesh should be attempted
(see jigglemesh for details). Jiggling can be done until the minimum or the mean of the
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quality of the triangles decreases. JiggleIter can be used to set an upper limit on the
number of iterations.

The MesherVersion property chooses the algorithm for mesh generation. The
'R2013a' algorithm runs faster, and can triangulate more geometries than the
'preR2013a' algorithm. Both algorithms use Delaunay triangulation.

Examples

Make a simple triangular mesh of the L-shaped membrane in the PDE app. Before
you do anything in the PDE app, set the Maximum edge size to inf in the Mesh
Parameters dialog box. You open the dialog box by selecting the Parameters option from
the Mesh menu. Also select the items Show Node Labels and Show Triangle Labels
in the Mesh menu. Then create the initial mesh by pressing the D  button. (This can also
be done by selecting the Initialize Mesh option from the Mesh menu.)

The following figure appears.
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The corresponding mesh data structures can be exported to the main workspace by
selecting the Export Mesh option from the Mesh menu.
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p

p =

   -1    1   1   0   0   -1

   -1   -1   1   1   0    0

e

e =

   1   2   3   4   5   6

   2   3   4   5   6   1

   0   0   0   0   0   0

   1   1   1   1   1   1

   1   2   3   4   5   6

   1   1   1   1   1   1

   0   0   0   0   0   0

t

t =

   1   2   3   1

   2   3   4   5

   5   5   5   6

   1   1   1   1

More About
• “Mesh Data” on page 2-161

References

George, P. L., Automatic Mesh Generation — Application to Finite Element Methods,
Wiley, 1991.

See Also
decsg | jigglemesh | refinemesh
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jigglemesh

Jiggle internal points of triangular mesh

Syntax

p1 = jigglemesh(p,e,t)

p1 = jigglemesh(p,e,t,'PropertyName',PropertyValue,...)

Description

p1 = jigglemesh(p,e,t) jiggles the triangular mesh by adjusting the node point
positions. The quality of the mesh normally increases.

The following property name/property value pairs are allowed.

Property Value Default Description

Opt 'off' | 'mean'

| 'minimum'

'mean' Optimization method,
described in the following
bullets

Iter numeric 1 or 20 (see the following
bullets)

Maximum iterations

Each mesh point that is not located on an edge segment is moved toward the center of
mass of the polygon formed by the adjacent triangles. This process is repeated according
to the settings of the Opt and Iter variables:

• When Opt is set to 'off' this process is repeated Iter times (default: 1).
• When Opt is set to 'mean' the process is repeated until the mean triangle quality

does not significantly increase, or until the bound Iter is reached (default: 20).
• When Opt is set to 'minimum' the process is repeated until the minimum triangle

quality does not significantly increase, or until the bound Iter is reached (default:
20).
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Examples

Create a triangular mesh of the L-shaped membrane, first without jiggling, and then
jiggle the mesh.

[p,e,t] = initmesh('lshapeg','jiggle','off'); 

q = pdetriq(p,t); 

pdeplot(p,e,t,'xydata',q,'colorbar','on','xystyle','flat') 

p1 = jigglemesh(p,e,t,'opt','mean','iter',inf); 

q = pdetriq(p1,t); 

pdeplot(p1,e,t,'xydata',q,'colorbar','on','xystyle','flat')

More About
• “Mesh Data” on page 2-161

See Also
initmesh | pdetriq
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meshToPet

[p,e,t] representation of FEMesh data

Syntax

[p,e,t] = meshToPet(mesh)

Description

[p,e,t] = meshToPet(mesh) extracts the legacy [p,e,t] mesh representation from
a FEMesh object.

Examples

Convert 2-D Mesh to [p,e,t] Form

This example shows how to convert a mesh in object form to [p,e,t] form.

Create a 2-D PDE geometry and incorporate it into a model object. View the geometry.

model = createpde(1);

R1 = [3,4,-1,1,1,-1,-.4,-.4,.4,.4]';

C1 = [1,.5,0,.2]';

% Pad C1 with zeros to enable concatenation with R1

C1 = [C1;zeros(length(R1)-length(C1),1)];

geom = [R1,C1];

ns = (char('R1','C1'))';

sf = 'R1-C1';

gd = decsg(geom,sf,ns);

geometryFromEdges(model,gd);

pdegplot(model,'EdgeLabels','on')

xlim([-1.1 1.1])

axis equal
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Create a mesh for the geometry. View the mesh.

generateMesh(model);

pdemesh(model)

axis equal
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Convert the mesh to [p,e,t] form.

[p,e,t] = meshToPet(model.Mesh);

View the sizes of the [p,e,t] matrices.

size(p)

ans =

     2    87

size(e)

ans =
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     7    38

size(t)

ans =

     4   136

Input Arguments

mesh — Mesh object
Mesh property of a PDEModel object | output of generateMesh

Mesh object, specified as the Mesh property of a PDEModel object or as the output of
generateMesh.

Example: model.Mesh

Output Arguments

p — Mesh points
2-by-Np matrix | 3-by-Np matrix

Mesh points, returned as a 2-by-Np matrix (2-D geometry) or a 3-by-Np matrix (3-D
geometry). Np is the number of points (nodes) in the mesh. Each column p(:,k) consists
of the x-coordinate of point k in p(1,k), the y-coordinate of point k in p(2,k), and, for 3-
D, the z-coordinate of point k in p(3,k). For details, see “Mesh Data” on page 2-161.

e — Mesh edges
7-by-Ne matrix | mesh associativity object

Mesh edges, returned as a 7-by-Ne matrix (2-D), or a mesh associativity object (3-D).
Ne is the number of edges in the mesh. An edge is a pair of points in p containing a
boundary between subdomains, or containing an outer boundary. For details, see “Mesh
Data” on page 2-161.

t — Mesh elements
4-by-Nt matrix | 5-by-Nt matrix | 11-by-Nt matrix
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Mesh elements, returned as a 4-by-Nt matrix (2-D), a 5-by-Nt matrix (3-D with linear
elements), or an 11-by-Nt matrix (3-D with quadratic elements). Nt is the number of
triangles or tetrahedra in the mesh.

• In 2-D, t(1,k), t(2,k), and t(3,k) contain indices to the three points in p that
form triangle k. The points are in counterclockwise order. t(4,k) contains the
subdomain number of the triangle. For details, see “Mesh Data for [p,e,t] Triples: 2-D”
on page 2-161.

• In 3-D, the t(i,k), with i ranging from 1 through 4 or 1 through 10, contain
indices to the four or ten points in tetrahedron k. For details, see “Mesh Data for
[p,e,t] Triples: 3-D” on page 2-162. The last row, t(5,k) or t(11,k), contains the
subdomain number of the tetrahedron (currently the subdomain is 1).

More About

Tips

• Use meshToPet to obtain the p and t data for interpolation using pdeInterpolant.

• “Mesh Data” on page 2-161

See Also
FEMesh Properties | generateMesh

Introduced in R2015a
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parabolic
Solve parabolic PDE problem

Syntax
u1 = parabolic(u0,tlist,model,c,a,f,d)

u1 = parabolic(u0,tlist,model,c,a,f,d,rtol)

u1 = parabolic(u0,tlist,model,c,a,f,d,rtol,atol)

u1 = parabolic(u0,tlist,b,p,e,t,c,a,f,d)

u1 = parabolic(u0,tlist,b,p,e,t,c,a,f,d,rtol)

u1 = parabolic(u0,tlist,b,p,e,t,c,a,f,d,rtol,atol)

u1 = parabolic(u0,tlist,K,F,B,ud,M)

u1 = parabolic(u0,tlist,K,F,B,ud,M,rtol)

u1 = parabolic(u0,tlist,K,F,B,ud,M,rtol,atol)

u1 = parabolic( ___ ,'Stats','off')

Description

u1 = parabolic(u0,tlist,model,c,a,f,d) produces the solution to the FEM
formulation of the scalar PDE problem

d c au f
u

t
u

∂

∂
—-— ◊ ( ) + = ,

on a 2-D or 3-D region Ω, or the system PDE problem

d c au f
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u
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∂
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with geometry, mesh, and boundary conditions specified in model, and with initial value
u0. model is a PDEModel object. See “Solve Problems Using PDEModel Objects” on page
2-11.

For a scalar PDE problem, each row in the solution matrix u1 is the solution at the
coordinates given by the corresponding column in the points p = model.Mesh.Nodes.
Each column in u1 is the solution at the time given by the corresponding item in tlist.
For a system of dimension N with np node points, the first np rows of u1 describe the first
component of u, the following np rows of u1 describe the second component of u, and so
on. Thus, the components of u are placed in the vector u as N blocks of node point rows.

The coefficients c, a, d, and f of the PDE problem can be given in a variety of ways.
The coefficients can depend on t, the time. They can also depend on u, the solution,
and on the components of the gradient of u, namely ux, uy, and, for 3-D geometry, uz.
For a complete listing of all options, see “Scalar PDE Coefficients” on page 2-59 and
“Coefficients for Systems of PDEs” on page 2-86.

atol and rtol are absolute and relative tolerances that are passed to the ODE solver.

u1 = parabolic(u0,tlist,b,p,e,t,c,a,f,d) solves the problem using a mesh
described by p, e, and t, with boundary conditions given by b.

b describes the boundary conditions of the PDE problem. For the recommended way
of specifying boundary conditions, see “Specify Boundary Conditions Objects” on page
2-127. For all methods of specifying boundary conditions, see “Forms of Boundary
Condition Specification” on page 2-124.

The geometry of the PDE problem is given by the mesh data p, e, and t. For details on
the mesh data representation, see “Mesh Data” on page 2-161.

u1 = parabolic(u0,tlist,K,F,B,ud,M) produces the solution to the ODE problem

¢ + =

= +

B MB
du
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u Bu u

u
i

i

i d

·

with initial value for u being u0.

Add the Stats name-value pair at the end of any syntax to control the display of internal
ODE solver statistics. Valid values for Stats are 'off' and 'on' (default).
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Examples

Solve the heat equation

∂

∂
=

u

t

uD

on a square geometry –1 ≤ x,y ≤ 1 (squareg). Choose u(0) = 1 on the disk x2 +y2 < 0.42,
and u(0) = 0 otherwise. Use Dirichlet boundary conditions u = 0 (squareb1). Compute
the solution at times linspace(0,0.1,20). Plot the initial condition and the solution
at the final time.

model = createpde;

geometryFromEdges(model,@squareg);

generateMesh(model,'Hmax',0.02);

p = model.Mesh.Nodes;

u0 = zeros(size(p,2),1); 

ix = find(sqrt(p(1,:).^2 + p(2,:).^2) < 0.4); 

u0(ix) = ones(size(ix)); 

tlist = linspace(0,0.1,20);

c = 1;

a = 0;

f = 0;

d = 1;

applyBoundaryCondition(model,'Edge',1:model.Geometry.NumEdges,'u',0);

u1 = parabolic(u0,tlist,model,c,a,f,d);

pdeplot(model,'xydata',u1(:,1));

axis equal

figure

pdeplot(model,'xydata',u1(:,20))

axis equal
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Note In expressions for boundary conditions and PDE coefficients, the symbol t is used
to denote time. The variable t is often used to store the triangle matrix of the mesh. You
can use any variable to store the triangle matrix, but in the Partial Differential Equation
Toolbox expressions, t always denotes time.

More About
• “Solve Problems Using PDEModel Objects” on page 2-11
• “Scalar PDE Coefficients” on page 2-59
• “Specify 3-D PDE Coefficients in Function Form” on page 2-70
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• “Coefficients for Systems of PDEs” on page 2-86
• “Boundary Conditions for Scalar PDE” on page 2-148
• “Boundary Conditions for PDE Systems” on page 2-153

See Also
assempde | hyperbolic

Introduced before R2006a
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pdeadgsc
Select triangles using relative tolerance criterion

Syntax

bt = pdeadgsc(p,t,c,a,f,u,errf,tol)

Description

bt = pdeadgsc(p,t,c,a,f,u,errf,tol) returns indices of triangles to be refined in
bt. Used from adaptmesh to select the triangles to be further refined. The geometry of
the PDE problem is given by the mesh data p and t. For more details, see “Mesh Data”
on page 2-161.

c,a, and f are PDE coefficients. For details, see “Scalar PDE Coefficients” on page 2-59
and “Coefficients for Systems of PDEs” on page 2-86.

u is the current solution, given as a column vector. For details, see assempde.

errf is the error indicator, as calculated by pdejmps.

tol is a tolerance parameter.

Triangles are selected using the criterion errf>tol*scale, where scale is calculated
as follows:

Let cmax, amax, fmax, and umax be the maximum of c, a, f, and u, respectively. Let l be
the side of the smallest axis-aligned square that contains the geometry.

Then scale = max(fmax*l^2,amax*umax*l^2,cmax*umax). The scaling makes the
tol parameter independent of the scaling of the equation and the geometry.

See Also
adaptmesh | pdejmps
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pdeadworst
Select triangles relative to worst value

Syntax

bt = pdeadworst(p,t,c,a,f,u,errf,wlevel)

Description

bt = pdeadworst(p,t,c,a,f,u,errf,wlevel) returns indices of triangles to be
refined in bt. Used from adaptmesh to select the triangles to be further refined.

The geometry of the PDE problem is given by the mesh data p and t. For details, see
“Mesh Data” on page 2-161.

c, a, and f are PDE coefficients. For details, see “Scalar PDE Coefficients” on page 2-59.

u is the current solution, given as a column vector. For details, see assempde.

errf is the error indicator, as calculated by pdejmps.

wlevel is the error level relative to the worst error. wlevel must be between 0 and 1.

Triangles are selected using the criterion errf>wlevel*max(errf).

See Also
adaptmesh | assempde | initmesh | pdejmps
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pdearcl
Interpolation between parametric representation and arc length

Syntax

pp = pdearcl(p,xy,s,s0,s1)

Description

pp = pdearcl(p,xy,s,s0,s1) returns parameter values for a parameterized curve
corresponding to a given set of arc length values.

p is a monotone row vector of parameter values and xy is a matrix with two rows giving
the corresponding points on the curve.

The first point of the curve is given the arc length value s0 and the last point the value
s1.

On return, pp contains parameter values corresponding to the arc length values specified
in s.

The arc length values s, s0, and s1 can be an affine transformation of the arc length.

Examples

See the examples in “2-D Geometry”.
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pdeBoundaryConditions class

Boundary conditions

Note: pdeBoundaryConditions will be removed in a future release. Use
BoundaryCondition instead.

Description

Define boundary conditions for each portion of the geometry boundary. Specify boundary
conditions in one of three ways:

• Explicitly set the value of components of the solution on certain geometry edges by
setting the 'u' name-value pair, possibly including an EquationIndex name-value
pair for PDE systems.

• Implicitly set the value of components of the solution on certain geometry edges by
setting the 'h' and 'r' name-value pairs, which represent the equation
h*u = r.

• Set generalized Neumann conditions on certain geometry edges by setting the 'g'
and 'q' name-value pairs, which represent the equation

r

n c u qu g· —( ) + =

r

n  is the outward unit normal on the boundary.

For systems of N > 1 equations, the generalized Neumann conditions are

n c qu gu· ƒ( ) + =—

See “Boundary Conditions for PDE Systems” on page 2-153.
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Note: You can set only one type of boundary condition in a call to
pdeBoundaryConditions: a 'u', EquationIndex pair, or an 'r', 'h' pair, or a 'g',
'q' pair. If you set only one member of a pair, the other takes its default value.

Construction
bc = pdeBoundaryConditions(ApplicationRegion,Name,Value) creates
boundary conditions for the geometry edge or edges in ApplicationRegion. The
Name,Value pairs specify the boundary conditions. Name can also be a property
name and Value is the corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input Arguments

ApplicationRegion — Geometry edges for boundary conditions
vector of geometry edge entities

Geometry edges for boundary conditions, specified as a vector of geometry edge entities.

Before creating boundary conditions, first create geometry using the decsg function
or by writing a geometry file. Then call pdeGeometryFromEdges to create a geometry
container. Obtain the edges for the boundary conditions from the Edges property in the
geometry container.
Example: ApplicationRegion = pg.Edges([1:4,10])

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'r' — Dirichlet condition h*u = r
zeros(N,1) (default) | vector with N elements | function handle

Dirichlet condition h*u = r, specified as a vector with N elements or as a function
handle. N is the number of PDEs in the system. See “Systems of PDEs” on page 2-58.
For the syntax of the function handle form of r, see “Specify Nonconstant Boundary
Conditions” on page 2-138.
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Note: You can set only one type of boundary condition in a call to
pdeBoundaryConditions (see “Description” on page 6-104): a 'u', EquationIndex
pair, or an 'r', 'h' pair, or a 'g', 'q' pair. If you set only one member of a pair, the
other takes its default value.

Example: [0;4;-1]

Data Types: double | function_handle
Complex Number Support: Yes

'h' — Dirichlet condition h*u = r
eye(N) (default) | N-by-N matrix | vector with N^2 elements | function handle

Dirichlet condition h*u = r, specified as an N-by-N matrix, a vector with N^2 elements,
or a function handle. N is the number of PDEs in the system. See “Systems of PDEs”
on page 2-58. For the syntax of the function handle form of h, see “Specify Nonconstant
Boundary Conditions” on page 2-138.

Note: You can set only one type of boundary condition in a call to
pdeBoundaryConditions (see “Description” on page 6-104): a 'u', EquationIndex
pair, or an 'r', 'h' pair, or a 'g', 'q' pair. If you set only one member of a pair, the
other takes its default value.

Example: [2,1;1,2]

Data Types: double | function_handle
Complex Number Support: Yes

'g' — Generalized Neumann condition n·(c×∇u) + qu = g
zeros(N,1) (default) | vector with N elements | function handle

Generalized Neumann condition n·(c×∇u) + qu = g, specified as a vector with N
elements or as a function handle. N is the number of PDEs in the system. See “Systems
of PDEs” on page 2-58. For the syntax of the function handle form of g, see “Specify
Nonconstant Boundary Conditions” on page 2-138.

Note: You can set only one type of boundary condition in a call to
pdeBoundaryConditions (see “Description” on page 6-104): a 'u', EquationIndex



 pdeBoundaryConditions class

6-107

pair, or an 'r', 'h' pair, or a 'g', 'q' pair. If you set only one member of a pair, the
other takes its default value.

Example: [3;2;-1]

Data Types: double | function_handle
Complex Number Support: Yes

'q' — Generalized Neumann condition n·(c×∇u) + qu = g
zeros(N) (default) | N-by-N matrix | vector with N^2 elements | function handle

Generalized Neumann condition n·(c×∇u) + qu = g, specified as an N-by-N matrix, a
vector with N^2 elements, or a function handle. N is the number of PDEs in the system.
See “Systems of PDEs” on page 2-58. For the syntax of the function handle form of q, see
“Specify Nonconstant Boundary Conditions” on page 2-138.

Note: You can set only one type of boundary condition in a call to
pdeBoundaryConditions (see “Description” on page 6-104): a 'u', EquationIndex
pair, or an 'r', 'h' pair, or a 'g', 'q' pair. If you set only one member of a pair, the
other takes its default value.

Example: eye(3)

Data Types: double | function_handle
Complex Number Support: Yes

'u' — Dirichlet conditions
zeros(N,1) (default) | vector of up to N elements | function handle

Dirichlet conditions, specified as a vector of up to N elements or a function handle.
EquationIndex and 'u' must have the same length. For the syntax of the function
handle form of u, see “Specify Nonconstant Boundary Conditions” on page 2-138.

Note: You can set only one type of boundary condition in a call to
pdeBoundaryConditions (see “Description” on page 6-104): a 'u', EquationIndex
pair, or an 'r', 'h' pair, or a 'g', 'q' pair. If you set only one member of a pair, the
other takes its default value.
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Example: bc = pdeBoundaryConditions(ApplicationRegion,'u',0)

Data Types: double
Complex Number Support: Yes

'EquationIndex' — Index of specified 'u' components
1:N (default) | vector of integers with entries from 1 to N

Index of specified 'u' components, specified as a vector of integers with entries from 1 to
N. EquationIndex and 'u' must have the same length.

Note: You can set only one type of boundary condition in a call to
pdeBoundaryConditions (see “Description” on page 6-104): a 'u', EquationIndex
pair, or an 'r', 'h' pair, or a 'g', 'q' pair. If you set only one member of a pair, the
other takes its default value.

Example: bc = pdeBoundaryConditions(ApplicationRegion,'u',
[3;-1],'EquationIndex',[2,3])

Data Types: double

'Vectorized' — Vectorized function evaluation
'off' (default) | 'on'

Vectorized function evaluation, specified as 'on' or 'off'. This applies when you
pass a function handle for an argument. To save time in function handle evaluation,
specify 'on', assuming that your function handle computes in a vectorized fashion. See
“Vectorization”. For details, see “Specify Nonconstant Boundary Conditions” on page
2-138.
Example: bc =
pdeBoundaryConditions(ApplicationRegion,'u',@ucalculator,'Vectorized','on')

Data Types: char

Properties

ApplicationRegion — Geometry edges for boundary conditions
vector of geometry edge entities
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Geometry edges for boundary conditions, specified as a vector of geometry edge entities.

EquationIndex — Index of specified 'u' components
1:N (default) | vector of integers with entries from 1 to N

Index of specified 'u' components, specified as a vector of integers with entries from 1
to N. The number of elements in EquationIndex must equal the number of elements in
'u'.

g — Generalized Neumann condition n·(c×∇u) + qu = g
zeros(N,1) (default) | vector with N elements | function handle

Generalized Neumann condition n·(c×∇u) + qu = g, specified as a vector with N
elements or as a function handle. N is the number of PDEs in the system. See “Systems of
PDEs” on page 2-58. For details of the function handle syntax, see “Specify Nonconstant
Boundary Conditions” on page 2-138.

h — Dirichlet condition h*u = r
eye(N) (default) | N-by-N matrix | vector with N^2 elements | function handle

Dirichlet condition h*u = r, specified as an N-by-N matrix, a vector with N^2 elements,
or a function handle. N is the number of PDEs in the system. See “Systems of PDEs” on
page 2-58. For details of the function handle syntax, see “Specify Nonconstant Boundary
Conditions” on page 2-138.

q — Generalized Neumann condition n·(c×∇u) + qu = g
zeros(N,N) (default) | N-by-N matrix | vector with N^2 elements | function handle

Generalized Neumann condition n·(c×∇u) + qu = g, specified as an N-by-N matrix,
a vector with N^2 elements, or as a function handle. N is the number of PDEs in the
system. See “Systems of PDEs” on page 2-58. For details of the function handle syntax,
see “Specify Nonconstant Boundary Conditions” on page 2-138.

r — Dirichlet condition h*u = r
zeros(N,1) (default) | vector with N elements | function handle

Dirichlet condition h*u = r, specified as a vector with N elements, or a function handle.
N is the number of PDEs in the system. See “Systems of PDEs” on page 2-58. For details
of the function handle syntax, see “Specify Nonconstant Boundary Conditions” on page
2-138.
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u — Dirichlet condition u = Ubdry
zeros(N,1) (default) | vector with up to N elements | function handle

Dirichlet condition u = Ubdry, specified as a vector with up to N elements or a function
handle. N is the number of PDEs in the system. See “Systems of PDEs” on page 2-58. The
number of elements in u must equal the number of elements in EquationIndex. For
details of the function handle syntax, see “Specify Nonconstant Boundary Conditions” on
page 2-138.

Vectorized — Vectorized function evaluation
'off' (default) | 'on'

Vectorized function evaluation, specified as 'off' or 'on'. This applies when you pass a
function handle for an argument. For details of the function handle syntax, see “Specify
Nonconstant Boundary Conditions” on page 2-138.

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Constant Boundary Conditions for a Scalar Problem

This example sets Dirichlet conditions on two edges of a rectangle, and Neumann
conditions on the other two edges.

Create a rectangle and view its edge labels.

R1 = [3,4,-1,1,1,-1,-.4,-.4,.4,.4]';

sf = 'R1';

ns = sf';

% Create geometry

g = decsg(R1,sf,ns);

pg = pdeGeometryFromEdges(g); % Create pdeGeometry object

pdegplot(g,'edgeLabels','on')

xlim([-1.1 1.1])
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axis equal

Set Dirichlet conditions so the solution  on edges 1 and 4.

bc1 = pdeBoundaryConditions(pg.Edges([1,4]),'u',3);

Set Neumann conditions with  and  on edges 2 and 3.

bc2 = pdeBoundaryConditions(pg.Edges([2,3]),'q',1,'g',-1);

Solve an elliptic equation with these boundary conditions, using coefficients , ,
and .

c = 1;
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a = 0;

f = 10;

problem = pde();

problem.BoundaryConditions = [bc1,bc2];

[p,e,t] = initmesh(g);

[p,e,t] = refinemesh(g,p,e,t);

u = assempde(problem,p,e,t,c,a,f);

pdeplot(p,e,t,'xydata',u,'zdata',u)

view(174,2)

Constant Boundary Conditions for a System of Equations

This example creates constant boundary conditions for a PDE system.
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Create a rectangle and view its edge labels.

R1 = [3,4,-1,1,1,-1,-.4,-.4,.4,.4]';

sf = 'R1';

ns = sf';

% Create geometry

g = decsg(R1,sf,ns);

pg = pdeGeometryFromEdges(g); % Create pdeGeometry object

pdegplot(g,'EdgeLabels','on')

xlim([-1.1 1.1])

axis equal

Create Dirichlet conditions for an N = 2 system. Set the Dirichlet condition values at edge
2 to [0;1]. Set the  component on edge 4 to the value 3.
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bc2 = pdeBoundaryConditions(pg.Edges(2),'u',[0;1]);

bc4 = pdeBoundaryConditions(pg.Edges(4),'u',3,'EquationIndex',2);

Create Neumann conditions for edges 1 and 3 to have ,  = [-2,2].

bc13 = pdeBoundaryConditions(pg.Edges([1,3]),'g',[-2,2]); % q = 0 by default

Set a Neumann boundary condition on edge 4.

bc41 = pdeBoundaryConditions(pg.Edges(4),'g',[-2,0]);

Solve an elliptic problem with these boundary conditions, and with  [2;4], ,
.

[p,e,t] = initmesh(g);

[p,e,t] = refinemesh(g,p,e,t);

problem = pde(2); % N = 2

problem.BoundaryConditions = [bc2,bc4,bc13,bc41];

f = [2;4];

a = 0;

c = 1;

u = assempde(problem,p,e,t,c,a,f);

u2 = reshape(u,[],2); % Each column of u2 has one component of the solution

subplot(1,2,1)

pdeplot(p,e,t,'xydata',u2(:,1),'zdata',u2(:,1),'colorbar','off')

subplot(1,2,2)

pdeplot(p,e,t,'xydata',u2(:,2),'zdata',u2(:,2),'colorbar','off')
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• “Solve PDEs with Constant Boundary Conditions” on page 2-133
• “Solve PDEs with Nonconstant Boundary Conditions” on page 2-140

Alternatives

For alternative ways to specify boundary conditions, see “Forms of Boundary Condition
Specification” on page 2-124.

See Also
pdeGeometryFromEdges
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More About
• “Specify Boundary Conditions Objects” on page 2-127
• “Classification of Boundary Conditions” on page 2-125
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pdecgrad
Flux of PDE solution

Syntax
[cgxu,cgyu] = pdecgrad(p,t,c,u)

[cgxu,cgyu] = pdecgrad(p,t,c,u,time)

[cgxu,cgyu] = pdecgrad(p,t,c,u,time,sdl)

Description

[cgxu,cgyu] = pdecgrad(p,t,c,u) returns the flux, c uƒ — , evaluated at the
center of each triangle.

Row i of cgxu contains
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There is one column for each triangle in t in both cgxu and cgyu.

The geometry of the PDE problem is given by the mesh data p and t. Details on the mesh
data representation can be found in the entry on initmesh.

The coefficient c of the PDE problem can be given in a variety of ways. A complete listing
of all options can be found in the entry on assempde“Scalar PDE Coefficients” on page
2-59 and “c Coefficient for Systems” on page 2-95.
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The format for the solution vector u is described in assempde.

The scalar optional argument time is used for parabolic and hyperbolic problems, if c
depends on t, the time.

The optional argument sdl restricts the computation to the subdomains in the list sdl.

See Also
assempde
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pdecirc
Draw circle

pdecirc opens the PDE app and draws a circle. If, instead, you
want to draw circles in a MATLAB figure, use the plot function
such as t = linspace(0,2*pi);plot(cos(t),sin(t)) or
plot(0,0,'o','MarkerSize',100), or the rectangle function with the Curvature
name-value pair set to [1 1], or the Image Processing Toolbox™ viscircles function.

Syntax
pdecirc(xc,yc,radius)

pdecirc(xc,yc,radius,label)

Description
pdecirc(xc,yc,radius) draws a circle with center in (xc,yc) and radius radius. If
the PDE app is not active, it is automatically started, and the circle is drawn in an empty
geometry model.

The optional argument label assigns a name to the circle (otherwise a default name is
chosen).

The state of the Geometry Description matrix inside the PDE app is updated to include
the circle. You can export the Geometry Description matrix from the PDE app by using
the Export Geometry Description option from the Draw menu. For a details on the
format of the Geometry Description matrix, see decsg.

Examples
The following command starts the PDE app and draws a unit circle.

pdecirc(0,0,1)

See Also
pdeellip | pdepoly | pderect | pdetool
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pdecont
Shorthand command for contour plot

Syntax
pdecont(p,t,u)

pdecont(p,t,u,n)

pdecont(p,t,u,v)

h = pdecont(p,t,u)

h = pdecont(p,t,u,n)

h = pdecont(p,t,u,v)

Description

pdecont(p,t,u) draws 10 level curves of the PDE node or triangle data u. h =
pdecont(p,t,u) additionally returns handles to the drawn axes objects.

If u is a column vector, node data is assumed. If u is a row vector, triangle data is
assumed. Triangle data is converted to node data using the function pdeprtni.

The geometry of the PDE problem is given by the mesh data p and t. For details on the
mesh data representation, see initmesh.

pdecont(p,t,u,n) plots using n levels.

pdecont(p,t,u,v) plots using the levels specified by v.

This command is just shorthand for the call

pdeplot(p,[],t,'xydata',u,'xystyle','off','contour',...

'on','levels',n,'colorbar','off'); 

If you want to have more control over your contour plot, use pdeplot instead of
pdecont.
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Examples

Plot the contours of the solution to the equation –Δu = 1 over the geometry defined by the
L-shaped membrane. Use Dirichlet boundary conditions u = 0 on ∂Ω.

[p,e,t] = initmesh('lshapeg'); 

[p,e,t] = refinemesh('lshapeg',p,e,t); 

u = assempde('lshapeb',p,e,t,1,0,1); 

pdecont(p,t,u)

See Also
pdemesh | pdeplot | pdesurf
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pdeeig
Solve eigenvalue PDE problem

Syntax

[v,l] = pdeeig(model,c,a,d,r)

[v,l] = pdeeig(b,p,e,t,c,a,d,r)

[v,l] = pdeeig(K,B,M,r)

Description

[v,l] = pdeeig(model,c,a,d,r) produces the solution to the FEM formulation of
the scalar PDE eigenvalue problem

-— ◊ — + =( )c u au dul  on W

or the system PDE eigenvalue problem

-— ◊ ƒ — + =( ) ,c au u ldu on W

with geometry, boundary conditions, and mesh specified in model, a PDEModel object.
See “Solve Problems Using PDEModel Objects” on page 2-11.

r is a two-element vector, indicating an interval on the real axis. (The left-hand side can
be -Inf.) The algorithm returns all eigenvalues in this interval in l, up to a maximum of
99 eigenvalues.

v is an eigenvector matrix. For the scalar case each column in v is an eigenvector of
solution values at the corresponding node points from p. For a system of dimension N
with np node points, the first np rows of v describe the first component of v, the following
np rows of v describe the second component of v, and so on. Thus, the components of v are
placed in blocks v as N blocks of node point rows.

Note: Eigenvectors are determined only up to multiple by a scalar, including a negative
scalar.
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The eigenvalue PDE problem is a homogeneous problem, i.e., only boundary conditions
where g = 0 and r = 0 can be used. The nonhomogeneous part is removed automatically.

The coefficients c, a, d of the PDE problem can be given in a wide variety of ways. In the
context of pdeeig the coefficients cannot depend on u nor t, the time. For a complete
listing of all options, see “Scalar PDE Coefficients” on page 2-59 and “Coefficients for
Systems of PDEs” on page 2-86.

[v,l] = pdeeig(b,p,e,t,c,a,d,r) solves the problem using a mesh described by p,
e, and t, with boundary conditions given by b.

b describes the boundary conditions of the PDE problem. For the recommended way
of specifying boundary conditions, see “Specify Boundary Conditions Objects” on page
2-127. For all methods of specifying boundary conditions, see “Forms of Boundary
Condition Specification” on page 2-124.

The geometry of the PDE problem is given by the mesh data p, e, and t. For details on
the mesh data representation, see “Mesh Data” on page 2-161.

[v,l] = pdeeig(K,B,M,r) produces the solution to the generalized sparse matrix
eigenvalue problem
K ui = λB´MBui
u = Bui

with Real(λ) in the interval in r.

Examples

Eigenvalues and Eigenvectors of the L-Shaped Membrane

Compute the eigenvalues that are less than 100, and compute the corresponding
eigenmodes for
–∇u = λu
on the geometry of the L-shaped membrane.

model = createpde;

geometryFromEdges(model,@lshapeg);

applyBoundaryCondition(model,'Edge',1:model.Geometry.NumEdges,'u',0);

generateMesh(model,'Hmax',0.02);
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c = 1;

a = 0;

d = 1;

r = [-Inf 100];

[v,l] = pdeeig(model,c,a,d,r);

l(1)                    % first eigenvalue

ans =

    9.6481

Display the first eigenmode, and compare it to the built-in membrane plot.

pdeplot(model,'xydata',v(:,1),'zdata',v(:,1));
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figure 

membrane(1,20,9,9)      % the MATLAB function

Compute the sixteenth eigenvalue, and plot the sixteenth eigenmode.

l(16)                   % sixteenth eigenvalue

ans =

   92.4658

figure

pdeplot(model,'xydata',v(:,16),'zdata',v(:,16));    % sixteenth eigenmode
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Caution

In the standard case c and d are positive in the entire region. All eigenvalues are
positive, and 0 is a good choice for a lower bound of the interval. The cases where either c
or d is zero are discussed next.

• If d = 0 in a subregion, the mass matrix M becomes singular. This does not cause
any trouble, provided that c > 0 everywhere. The pencil (K,M) has a set of infinite
eigenvalues.

• If c = 0 in a subregion, the stiffness matrix K becomes singular, and the pencil (K,M)
has many zero eigenvalues. With an interval containing zero, pdeeig goes on for a
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very long time to find all the zero eigenvalues. Choose a positive lower bound away
from zero but below the smallest nonzero eigenvalue.

• If there is a region where both c = 0 and d = 0, we get a singular pencil. The whole
eigenvalue problem is undetermined, and any value is equally plausible as an
eigenvalue.

Some of the awkward cases are detected by pdeeig. If the shifted matrix is singular,
another shift is attempted. If the matrix with the new shift is still singular a good guess
is that the entire pencil (K,M) is singular.

If you try any problem not belonging to the standard case, you must use your knowledge
of the original physical problem to interpret the results from the computation.

More About

Algorithms

pdeeig calls sptarn to calculate eigenvalues. For details of the algorithm, see the
sptarn reference pages.
• “Solve Problems Using PDEModel Objects” on page 2-11
• “Scalar PDE Coefficients” on page 2-59
• “Specify 3-D PDE Coefficients in Function Form” on page 2-70
• “Coefficients for Systems of PDEs” on page 2-86
• “Boundary Conditions for Scalar PDE” on page 2-148
• “Boundary Conditions for PDE Systems” on page 2-153

See Also
sptarn

Introduced before R2006a
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pdeellip
Draw ellipse

Syntax
pdeellip(xc,yc,a,b,phi)

pdeellip(xc,yc,a,b,phi,label)

Description

pdeellip(xc,yc,a,b,phi) draws an ellipse with center in (xc,yc) and semiaxes
a and b. The rotation of the ellipse (in radians) is given by phi. If the PDE app is not
active, it is automatically started, and the ellipse is drawn in an empty geometry model.

The optional argument label assigns a name to the ellipse (otherwise a default name is
chosen.)

The state of the Geometry Description matrix inside the PDE app is updated to include
the ellipse. You can export the Geometry Description matrix from the PDE app by
selecting the Export Geometry Description option from the Draw menu. For a details
on the format of the Geometry Description matrix, see decsg.

Examples

The following command starts the PDE app and draws an ellipse.

pdeellip(0,0,1,0.3,pi/4) 

See Also
pdecirc | pdepoly | pderect | pdetool
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pdeent
Indices of triangles neighboring given set of triangles

Syntax
ntl = pdeent(t,tl)

Description

Given triangle data t and a list of triangle indices tl, ntl contains indices of the
triangles in tl and their immediate neighbors, i.e., those whose intersection with tl is
nonempty.

See Also
refinemesh
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pdeGeometryFromEdges
Create geometry object

Compatibility

Note: pdeGeometryFromEdges will be removed in a future release. Use
geometryFromEdges instead.

Syntax

pg = pdeGeometryFromEdges(g)

Description

pg = pdeGeometryFromEdges(g) returns a geometry object from a decomposed
geometry description or a geometry file.

Examples

Geometry from Decomposed Solid Geometry

This example geometry is a rectangle with a circular hole.

Create a rectangle and a circle. Combine them using the set formula 'R1-C1', which
subtracts the circle from the rectangle.

% Rectangle is code 3, 4 sides,

% followed by x-coordinates and then y-coordinates

R1 = [3,4,-1,1,1,-1,-.4,-.4,.4,.4]';

% Circle is code 1, center (.5,0), radius .2

C1 = [1,.5,0,.2]';

% Pad C1 with zeros to enable concatenation with R1

C1 = [C1;zeros(length(R1)-length(C1),1)];
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geom = [R1,C1];

% Names for the two geometric objects

ns = (char('R1','C1'))';

% Set formula

sf = 'R1-C1';

% Create geometry

g = decsg(geom,sf,ns);

Create the geometry object.

pg = pdeGeometryFromEdges(g);

Geometry from a Geometry Function

This example creates geometry from a function.

The circleg function ships with Partial Differential Equation Toolbox software. It
describes a circle centered at (0,0) with radius 1.

pg = pdeGeometryFromEdges(@circleg);

• “Solve PDE with Coefficients in Functional Form” on page 2-72
• “Solve PDEs with Constant Boundary Conditions” on page 2-133

Input Arguments

g — Geometry description
decomposed geometry matrix | function handle to a geometry file

Geometry description, specified as a decomposed geometry matrix or a function handle to
a geometry file.

Specify g as one of the following:

• Decomposed geometry matrix:

• Export from the PDE app
• Output of decsg
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• Function handle to a geometry file (see “Create Geometry Using a Geometry
Function” on page 2-23)

Example: pg = pdeGeometryFromEdges(@circleg)

Data Types: double | function_handle

Output Arguments

pg — Geometry container
edges

Geometry container, returned as edges. pg contains the edge objects, pg.Edges, that
together make the geometry.

More About
• “Specify Boundary Conditions Objects” on page 2-127

See Also
pdeBoundaryConditions
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pdegplot

Plot PDE geometry

Syntax

pdegplot(g)

h = pdegplot(g)

h = pdegplot(g,Name,Value)

Description

pdegplot(g) plots the geometry of a PDE problem, as described in g.

h = pdegplot(g) returns handles to the figure axes.

h = pdegplot(g,Name,Value) plots with additional options specified by one or more
Name,Value pair arguments.

Examples

Plot 2-D Geometry

Plot the geometry of a region defined by a few simple shapes.

g = [2 1 1 1 1 1 1 1 1 4 4;

-1 -0.55 -0.5 -0.45 -0.5 0.45 0.5 0.55 0.5 -1 0.17;

1 -0.5 -0.45 -0.5 -0.55 0.5 0.55 0.5 0.45 0.17 1;

0 -0.25 -0.3 -0.25 -0.2 -0.25 -0.3 -0.25 -0.2 0 -0.74;

0 -0.3 -0.25 -0.2 -0.25 -0.3 -0.25 -0.2 -0.25 -0.74 0;

0 0 0 0 0 0 0 0 0 1 1;

1 1 1 1 1 1 1 1 1 0 0;

0 -0.5 -0.5 -0.5 -0.5 0.5 0.5 0.5 0.5 0 0;

0 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 0 0;

0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 1 1;

0 0 0 0 0 0 0 0 0 0.75 0.75;



6 Functions — Alphabetical List

6-134

0 0 0 0 0 0 0 0 0 0 0];

pdegplot(g)

View the edge labels and the subdomain label. Add space at the top of the plot to see the
top edge clearly.

pdegplot(g,'EdgeLabels','on','SubdomainLabels','on')

ylim([-.8,.1])
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Plot 3-D Geometry

Import a 3-D geometry file. Plot the geometry and turn on face labels.

model = createpde;

importGeometry(model,'BracketTwoHoles.stl');

pdegplot(model,'FaceLabels','on')
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• “Solve PDE with Coefficients in Functional Form” on page 2-72
• “Create Geometry and Remove Subdomains” on page 2-19
• “Create and View 3-D Geometry” on page 2-44

Input Arguments

g — Geometry description
PDEModel object | output of decsg | decomposed geometry matrix | name of geometry
file | function handle to geometry file

Geometry description, specified by one of the following:
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• PDEModel object
• Output of decsg
• Decomposed geometry matrix (see “Decomposed Geometry Data Structure” on page

2-21)
• Name of geometry file (see “Create Geometry Using a Geometry Function” on page

2-23)
• Function handle to geometry file (see “Create Geometry Using a Geometry Function”

on page 2-23)

Data Types: double | char | function_handle

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:

'EdgeLabels' — Boundary edge labels of 2-D geometry
'off' (default) | 'on'

Boundary edge labels of 2-D geometry, specified as the comma-separated pair consisting
of 'EdgeLabels' and 'off' or 'on'.

Example: pdegplot(g,'EdgeLabels','on')

Data Types: char

'SubdomainLabels' — Subdomain labels of 2-D geometry
'off' (default) | 'on'

Subdomain labels of 2-D geometry, specified as the comma-separated pair consisting of
'EdgeLabels' and 'off' or 'on'.

Example: pdegplot(g,'SubdomainLabels','on')

Data Types: char

'FaceLabels' — Boundary face labels of 3-D geometry
'off' (default) | 'on'
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Boundary face labels of 3-D geometry, specified as the comma-separated pair consisting
of 'FaceLabels' and 'off' or 'on'.

Example: pdegplot(g,'FaceLabels','on')

Data Types: char

Output Arguments

h — Handles to the figure axes
vector

Handles to the figure axes, returned as a vector.

Alternative Functionality

App

If you create 2-D geometry in the PDE app, you can view the geometry from Boundary
Mode. To see the edge labels, select Boundary > Show Edge Labels. To see the
subdomain labels, select PDE > Show Subdomain Labels.

More About
• “Create 2-D Geometry” on page 2-14

See Also
decsg | importGeometry | pdetool | wgeom

Introduced before R2006a
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pdegrad
Gradient of PDE solution

Syntax
[ux,uy] = pdegrad(p,t,u)

[ux,uy] = pdegrad(p,t,u,sdl)

Description

[ux,uy] = pdegrad(p,t,u) returns the gradient of u evaluated at the center of each
triangle.

Row i from 1 to N of ux contains

∂

∂

u

x

i

Row i from 1 to N of uy contains

∂

∂

u

y

i

There is one column for each triangle in t in both ux and uy.

The geometry of the PDE problem is given by the mesh data p and t. For details on the
mesh data representation, see initmesh.

For a description of the format for the solution vector u, see assempde.

The optional argument sdl restricts the computation to the subdomains in the list sdl.

More About
• “Gradient or Derivatives of u” on page 2-68
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• “f Coefficient for Systems” on page 2-92

See Also
assempde
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Using pdeInterpolant Objects
Interpolant for nodal data to selected locations

An interpolant allows you to evaluate a PDE solution at any point within the geometry.

Partial Differential Equation Toolbox solvers return solution values at the nodes,
meaning the mesh points. To evaluate an interpolated solution at other points within the
geometry, create a pdeInterpolant object, and then call the evaluate function.

Examples

Create interpolant

This example shows how to create a pdeInterpolant from the solution to a scalar PDE.

Solve the equation  on the unit disk with zero Dirichlet conditions.

g0 = [1;0;0;1]; % circle centered at (0,0) with radius 1

sf = 'C1';

g = decsg(g0,sf,sf'); % decomposed geometry matrix

problem = allzerobc(g); % zero Dirichlet conditions

[p,e,t] = initmesh(g);

c = 1;

a = 0;

f = 1;

u = assempde(problem,p,e,t,c,a,f);

Construct an interpolant for the solution.

F = pdeInterpolant(p,t,u);

Evaluate the interpolant at the four corners of a square.

pOut = [0,1/2,1/2,0;

    0,0,1/2,1/2];

uOut = evaluate(F,pOut)

uOut =
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    0.2485

    0.1854

    0.1230

    0.1852

The values uOut(2) and uOut(4) are nearly equal, as they should be for symmetric
points in this symmetric problem.

Object Functions
evaluate

Create Object

F = pdeInterpolant(p,t,u) returns an interpolant F based on the data points p,
elements t, and data values at the points, u.

Argument Name Description

p Data point locations, specified as a matrix with two or three rows.
Each column of p is a 2-D or 3-D point. For details, see “Mesh Data”
on page 2-161.

For 2-D problems, construct p using the initmesh function,
or export from the Mesh menu of the PDE app. For 2-D or 3-D
geometry using a PDEModel object, obtain p using the meshToPet
function on model.Mesh. For example, [p,e,t] = initmesh(g)
or [p,e,t] = meshToPet(model.Mesh).

t Element indices, specified as a matrix. For 2-D geometry, t has
four rows. For 3-D geometry, Each column of t represents one
tetrahedral element. For details, see “Mesh Data” on page 2-161.

For 2-D problems, construct p using the initmesh function,
or export from the Mesh menu of the PDE app. For 2-D or 3-D
geometry using a PDEModel object, obtain t using the meshToPet
function on model.Mesh. For example, [p,e,t] = initmesh(g)
or [p,e,t] = meshToPet(model.Mesh).
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Argument Name Description

u Data values to interpolate, specified as a vector or matrix.
Typically, u is the solution of a PDE problem returned by
assempde, parabolic, hyperbolic, or another solver. For
example, u = assempde(b,p,e,t,c,a,f). You can also export u
from the Solve menu of the PDE app.

The dimensions of the matrix u depend on the problem. If np is the
number of columns of p, and N is the number of equations in the
PDE system, then u has N*np rows. The first np rows correspond
to equation 1, the next np rows correspond to equation 2, etc.
For parabolic or hyperbolic problems, u has one column for each
solution time; otherwise, u is a column vector.

Tip Use meshToPet to obtain the p and t data for interpolation using pdeInterpolant.

See Also
evaluate | pdeintrp | pdeprtni | tri2grid

More About
• “Mesh Data” on page 2-161
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pdeintrp
Interpolate from node data to triangle midpoint data

Syntax

ut = pdeintrp(p,t,un)

Description

ut = pdeintrp(p,t,un) gives linearly interpolated values at triangle midpoints from
the values at node points.

The geometry of the PDE problem is given by the mesh data p and t. For details on the
mesh data representation, see initmesh.

Let N be the dimension of the PDE system, np the number of node points, and nt the
number of triangles. The components of the node data are stored in un either as N
columns of length np or as an ordinary solution vector. The first np values of un describe
the first component, the following np values of un describe the second component, and so
on. The components of triangle data are stored in ut as N rows of length nt.

Caution

pdeprtni and pdeintrp are not inverse functions. The interpolation introduces some
averaging.

More About
• “Interpolated u” on page 2-68
• “f Coefficient for Systems” on page 2-92

See Also
assempde | evaluate | initmesh | pdeprtni
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pdejmps
Error estimates for adaptation

Syntax

errf = pdejmps(p,t,c,a,f,u,alfa,beta,m)

Description

errf = pdejmps(p,t,c,a,f,u,alfa,beta,m) calculates the error indication
function used for adaptation. The columns of errf correspond to triangles, and the rows
correspond to the different equations in the PDE system.

p andt are mesh data. For details, see initmesh.

c, a, and f are PDE coefficients. See “Scalar PDE Coefficients” on page 2-59 and
“Coefficients for Systems of PDEs” on page 2-86 for details. c, a, and f must be expanded,
so that columns correspond to triangles.

u is the solution vector. For details, see assempde.

The formula for computing the error indicator E(K) for each triangle K is

E K h f au h c um
K

m
h

K

( ) = -( ) + ◊Ê

Ë
Á

ˆ

¯
˜—
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Âa b t t

t

1

2

2 2
1 2

[ ,( )]

/

n

where n
t

 is the unit normal of edge t  and the braced term is the jump in flux across the
element edge, where α and β are weight indices and m is an order parameter. The norm
is an L2 norm computed over the element K. The error indicator is stored in errf as
column vectors, one for each triangle in t. More information can be found in the section
“Adaptive Mesh Refinement” on page 2-164.

See Also
adaptmesh | pdeadgsc | pdeadworst
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pdemdlcv
Convert Partial Differential Equation Toolbox 1.0 model files to 1.0.2 format

Syntax

pdemdlcv(infile,outfile)

Description

pdemdlcv(infile,outfile) converts the Partial Differential Equation Toolbox 1.0
model file infile to a Partial Differential Equation Toolbox 1.0.2 compatible model file.
The resulting file is saved as outfile. If the .m extension is missing in outfile, it is
added automatically.

Examples

pdedmdlcv('model42.m','model5.m') converts the Partial Differential Equation
Toolbox 1.0 Model file model42.m and saves the converted model in model5.m.
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pdemesh
Plot PDE mesh

Syntax
pdemesh(p,e,t)

pdemesh(p,e,t,u)

pdemesh(model)

pdemesh(model,u)

h = pdemesh( ___ )

Description

pdemesh(p,e,t) plots the mesh specified by the mesh data p, e, and t.

pdemesh(p,e,t,u) plots PDE node or triangle data u using a mesh plot. If u is a
column vector, node data is assumed. If u is a row vector, triangle data is assumed. This
command plots substantially faster than the pdesurf command.

The geometry of the PDE problem is given by the mesh data p, e, and t. For details on
the mesh data representation, see “Mesh Data” on page 2-161.

This command is just shorthand for the calls

pdeplot(p,e,t) % 2-D mesh

pdeplot3D(p,e,t) % 3-D mesh

pdeplot(p,e,t,'zdata',u) % 2-D only

If you want to have more control over your mesh plot, use pdeplot or pdeplot3D
instead of pdemesh.

pdemesh(model) plots the mesh contained in a 2-D or 3-D model object of type
PDEModel.

For 2-D geometry only, pdemesh(model,u) plots solution data u as a 3-D plot.
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For any input arguments, h = pdemesh( ___ ) additionally returns handles to the
plotted axes objects.

Examples

Plot the mesh for the geometry of the L-shaped membrane.

[p,e,t] = initmesh('lshapeg');

[p,e,t] = refinemesh('lshapeg',p,e,t); 

pdemesh(p,e,t)

Now solve Poisson's equation –Δu = 1 over the geometry defined by the L-shaped
membrane. Use Dirichlet boundary conditions u = 0 on ∂Ω, and plot the result.

u = assempde('lshapeb',p,e,t,1,0,1); 

pdemesh(p,e,t,u) 

More About
• “Mesh Data” on page 2-161
• “Solve PDE with Coefficients in Functional Form” on page 2-72

See Also
pdecont | pdeplot | pdesurf

Introduced before R2006a
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Using PDEModel Objects
PDE model container

A PDEModel object contains information about a PDE problem: the number of equations,
geometry, mesh, and boundary conditions.

Examples

Create and Populate a PDE Model

Create and populate a PDEModel object.

Create a container for a scalar PDE (N = 1).

model = createpde;

Include a torus geometry, zero Dirichlet boundary conditions, and the default mesh.

importGeometry(model,'Torus.stl');

applyBoundaryCondition(model,'Face',1,'u',0);

generateMesh(model);

Properties

PDESystemSize — Number of equations
1 (default) | positive integer

Number of equations, N, returned as a positive integer. See “Systems of PDEs” on page
2-58.
Example: 1

Data Types: double

BoundaryConditions — PDE boundary conditions
vector of BoundaryCondition objects

PDE boundary conditions, returned as a vector of BoundaryCondition objects. You
create boundary conditions using the applyBoundaryCondition function
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Geometry — Geometry description
geometry object

Geometry description, returned as a geometry object.

• AnalyticGeometry object for 2-D geometry. You create this geometry using the
geometryFromEdges function.

• DiscreteGeometry object for 3-D geometry. You create this geometry using the
importGeometry function.

Mesh — Mesh for solution
FEMesh object

Mesh for solution, returned as an FEMesh object. You create the mesh using the
generateMesh function.

Object Functions
applyBoundaryCondition generateMeshgeometryFromEdges importGeometry

Create Object

createpde returns a PDEModel container. Initially, the only property that is nonempty
is PDESystemSize, which is 1 for scalar problems.

See Also
applyBoundaryCondition | createpde | generateMesh | geometryFromEdges |
importGeometry | pdegplot | pdeplot | pdeplot3D

More About
• “Solve Problems Using PDEModel Objects” on page 2-11

Introduced in R2015a
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pdenonlin
Solve nonlinear PDE problem

Syntax
[u,res] = pdenonlin(model,c,a,f)

[u,res] = pdenonlin(model,c,a,f,Name,Value)

[u,res] = pdenonlin(b,p,e,t,c,a,f)

[u,res] = pdenonlin(b,p,e,t,c,a,f,Name,Value)

Description

[u,res] = pdenonlin(model,c,a,f) solves the nonlinear scalar PDE problem

-— ◊ — + = W( )c u au f    on 

or the nonlinear system PDE problem

-— ◊ ƒ — + = W( ) ,c u u f    a on 

where the coefficients c, a, and f can depend on the solution u. The algorithm solves
the equation by using damped Newton iteration with the Armijo-Goldstein line search
strategy.

The geometry, mesh, and boundary conditions are in model, a PDEModel object. See
“Solve Problems Using PDEModel Objects” on page 2-11.

The solution u is represented as the solution vector u. For details on the representation of
the solution vector, see assempde. res is the norm of the Newton step residuals.

The coefficients c, a, and f of the PDE problem can be given in a variety of ways. The
coefficients can depend on u, the solution, and on the components of the gradient of
u, namely ux, uy, and, for 3-D geometry, uz. For a complete listing of all options, see
“Scalar PDE Coefficients” on page 2-59 and “Coefficients for Systems of PDEs” on page
2-86.
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Boundary conditions can depend on u. A fixed-point iteration strategy is employed to
solve for the nonlinear boundary conditions.

[u,res] = pdenonlin(model,c,a,f,Name,Value) alters the solution process using
Name,Value pairs.

[u,res] = pdenonlin(b,p,e,t,c,a,f) solves the problem using a mesh described
by p, e, and t, with boundary conditions given by b. The mesh of the PDE problem is
given by the mesh data p, e, and t. For details on the mesh data representation, see
“Mesh Data” on page 2-161.

b describes the boundary conditions of the PDE problem. For the recommended way
of specifying boundary conditions, see “Specify Boundary Conditions Objects” on page
2-127. For all methods of specifying boundary conditions, see “Forms of Boundary
Condition Specification” on page 2-124.

The solver can be fine-tuned by setting some of the options described next.

Property Name Property Value Default Description

Jacobian fixed | lumped | full 'fixed'

for 2-D,
'full'

for 3-D

Approximation of Jacobian

3-D geometries accept only
'full'.

U0 string or numeric 0 Initial solution guess — Use the
syntax of “Initial Conditions” on
page 2-116

Tol positive scalar 1e-4 Residual size at termination
MaxIter positive integer 25 Maximum Gauss-Newton

iterations
MinStep positive scalar 1/2^16 Minimum damping of search

direction
Report on|off off Print convergence information
Norm string or numeric Inf Residual norm

There are three methods currently implemented to compute the Jacobian:

• Numerical evaluation of the full Jacobian based on the sparse version of the function
numjac
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• A “lumped” approximation described in “Nonlinear Equations” based on the numerical
differentiation of the coefficients

• A fixed-point iteration matrix where the Jacobian is approximated by the stiffness
matrix

Select the desired method by setting the Jacobian property to full, lumped, or fixed,
bearing in mind that the more precise methods are computationally more expensive.

U0 is the starting guess that can be given as an expression, a generic scalar, or a vector.
By default it is set to 0, but this is useless in problems such as ∇ · (1/u∇u) = 0 with
Dirichlet boundary conditions u = ex+y. Tol fixes the exit criterion from the Gauss-
Newton iteration, i.e., the iterations are terminated when the residual norm is less than
Tol. The norm in which the residual is computed is selected through Norm. This can be
any admissible MATLAB vector norm or energy for the energy norm.

MaxIter and MinStep are safeguards against infinite Gauss-Newton loops and they
bound the number of iterations and the step size used in each iteration. Setting Report
to on forces printing of convergence information.

Examples

Minimal Surface Problem

Solve a minimal surface problem. Because this problem has a nonlinear c coefficient, use
pdenonlin to solve it.

Create a model and include circular geometry using the built-in circleg function.

model = createpde;

geometryFromEdges(model,@circleg);

Set the coefficients.

a = 0;

f = 0;

c = '1./sqrt(1+ux.^2+uy.^2)';

Set a Dirichlet boundary condition with value x2.

boundaryfun = @(region,state)region.x.^2;

applyBoundaryCondition(model,'Edge',1:model.Geometry.NumEdges,...
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    'u',boundaryfun,'Vectorized','on');

Generate a mesh and solve the problem.

generateMesh(model,'Hmax',0.1);

u = pdenonlin(model,c,a,f);

pdeplot(model,'xydata',u,'zdata',u);

Diagnostics

If the Newton iteration does not converge, the error message Too many iterations
or Stepsize too small is displayed. If the initial guess produces matrices containing
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NaN or Inf elements, the error message Unsuitable initial guess U0 (default:
U0 = 0) is printed.

More About
• “Solve Problems Using PDEModel Objects” on page 2-11
• “Scalar PDE Coefficients” on page 2-59
• “Coefficients for Systems of PDEs” on page 2-86
• “Specify 3-D PDE Coefficients in Function Form” on page 2-70
• “Boundary Conditions for Scalar PDE” on page 2-148
• “Boundary Conditions for PDE Systems” on page 2-153
• “Initial Conditions” on page 2-116

See Also
assempde

Introduced before R2006a
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pdeplot

Plot solution in 2-D geometry

Syntax

pdeplot(model)

pdeplot(model,Name,Value)

pdeplot(p,e,t)

pdeplot(p,e,t,Name,Value)

h = pdeplot( ___ )

Description

pdeplot(model) plots the mesh specified in model.

pdeplot(model,Name,Value) plots data on the model mesh using one or more
Name,Value pair arguments.

Specify at least one of the flowdata (vector field plot), xydata (colored surface plot), or
zdata (3-D height plot) name-value pairs. Otherwise, pdeplot plots the mesh with no
data. You can combine any number of plot types.

pdeplot(p,e,t) plots the mesh described by p,e, and t.

pdeplot(p,e,t,Name,Value) plots data on the (p,e,t) mesh using one or more
Name,Value pair arguments.

Give at least one of the flowdata (vector field plot), xydata (colored surface plot), or zdata
(3-D height plot) name-value pairs. Otherwise, pdeplot plots the mesh with no data.
You can combine any number of plot types.

h = pdeplot( ___ ) returns handles to the axis objects using any of the input
arguments in the previous syntaxes.
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Examples

Mesh Plot of Model

Generate a mesh for a PDE model and plot the mesh.

Create a PDE model. Include the geometry of the built-in function lshapeg. Mesh the
geometry and plot it.

model = createpde;

geometryFromEdges(model,@lshapeg);

generateMesh(model);

pdeplot(model);
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Model Solution Plot

Create a colored plot of a solution to a PDE model.

Create a PDE model. Include the geometry of the built-in function lshapeg. Mesh the
geometry.

model = createpde;

geometryFromEdges(model,@lshapeg);

generateMesh(model);

Set zero Dirichlet boundary conditions on all edges.

applyBoundaryCondition(model,'Edge',1:model.Geometry.NumEdges,'u',0);
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Set the c coefficient to 1, a to 0, and f to 1. Solve and plot the PDE.

c = 1;

a = 0;

f = 1;

u = assempde(model,c,a,f);

pdeplot(model,'xydata',u)

Mesh Plot

Plot the p,e,t mesh.

Create the geometry and mesh.

[p,e,t] = initmesh('lshapeg');
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Plot the mesh.

pdeplot(p,e,t)

2-D Solution Plot

Plot a PDE solution as a 2-D colored surface plot.

Create the geometry, mesh, boundary conditions, PDE coefficients, and solution.

[p,e,t] = initmesh('lshapeg');

u = assempde('lshapeb',p,e,t,1,0,1);

Plot the solution.



 pdeplot

6-161

pdeplot(p,e,t,'xydata',u)

3-D Solution Plot

Plot a PDE solution as a 3-D colored plot.

Create the geometry, mesh, boundary conditions, PDE coefficients, and solution.

[p,e,t] = initmesh('lshapeg');

u = assempde('lshapeb',p,e,t,1,0,1);

Plot the solution.

pdeplot(p,e,t,'xydata',u,'zdata',u)
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Solution Quiver Plot

Plot the gradient of a PDE solution as a quiver plot.

Create the geometry, mesh, boundary conditions, PDE coefficients, and solution.

[p,e,t] = initmesh('lshapeg');

u = assempde('lshapeb',p,e,t,1,0,1);

Calculate the gradient of the solution. Put the gradient in a matrix for inclusion in the
quiver plot.

[ux,uy] = pdegrad(p,t,u); % Calculate gradient

ugrad = [ux;uy];
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Plot the gradient as a quiver plot.

pdeplot(p,e,t,'flowdata',ugrad)

Composite Plot

Plot the solution of a PDE in 3-D with the 'jet' coloring and a mesh, and include a
quiver plot. Get handles to the axis objects.

Create the geometry, mesh, boundary conditions, PDE coefficients, and solution.

[p,e,t] = initmesh('lshapeg');

u = assempde('lshapeb',p,e,t,1,0,1);
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Calculate the gradient of the solution. Put the gradient in a matrix for inclusion in the
quiver plot.

[ux,uy] = pdegrad(p,t,u); % Calculate gradient

ugrad = [ux;uy];

Plot the solution in 3-D with the 'jet' coloring and a mesh, and include the gradient as
a quiver plot.

h = pdeplot(p,e,t,'xydata',u,'zdata',u,...

    'colormap','jet','mesh','on','flowdata',ugrad)

h = 

  3x1 graphics array:

  Patch

  Quiver

  ColorBar
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Look underneath to see the quiver plot.

view(20,-20)
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• “Deflection of a Piezoelectric Actuator” on page 3-19
• “Solve PDE with Coefficients in Functional Form” on page 2-72

Input Arguments

model — PDE model
PDEModel object

PDE model, specified as a PDEModel object.

Example: model = createpde(1)
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p — Mesh points
matrix

2-by-Np matrix of points, where Np is the number of points in the mesh. For a description
of the (p,e,t) matrices, see “Mesh Data” on page 2-161.

Typically, you use the p, e, and t data exported from the PDE app, or generated by
initmesh or refinemesh.

Example: [p,e,t] = initmesh(gd)

Data Types: double

e — Mesh edges
matrix

7-by-Ne matrix of edges, where Ne is the number of edges in the mesh. For a description
of the (p,e,t) matrices, see “Mesh Data” on page 2-161.

Typically, you use the p, e, and t data exported from the PDE app, or generated by
initmesh or refinemesh.

Example: [p,e,t] = initmesh(gd)

Data Types: double

t — Mesh triangles
matrix

4-by-Nt matrix of triangles, where Nt is the number of triangles in the mesh. For a
description of the (p,e,t) matrices, see “Mesh Data” on page 2-161.

Typically, you use the p, e, and t data exported from the PDE app, or generated by
initmesh or refinemesh.

Example: [p,e,t] = initmesh(gd)

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
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quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Tip Give at least one of the flowdata (vector field plot), xydata (colored surface plot), or
zdata (3-D height plot) name-value pairs. Otherwise, pdeplot plots the mesh with no
data.

Example: pdeplot(p,e,t,'xydata',u,'zdata',u) sets surface plot coloring to the
solution u, and sets the heights for a 3-D plot to the solution u.

'colorbar' — Indicator to include color bar
'on' (default) | 'off'

Indicator to include color bar, specified as the comma-separated pair consisting of
'colorbar' and a string. 'on' displays a bar giving the numeric values of colors in the
plot. For details, see colorbar. pdeplot uses the colormap specified in the colormap
name-value pair.
Example: 'colorbar','off'

Data Types: char

'colormap' — Colormap
'cool' (default) | colormap string or matrix

Colormap, specified as the comma-separated pair consisting of 'colormap' and a string
representing a built-in colormap, or a colormap matrix. For details, see colormap.

colormap relates to the xydata name-value pair.

Example: 'colormap','jet'

Data Types: double | char

'contour' — Indicator to plot level curves
'off' (default) | 'on'

Indicator to plot level curves, specified as the comma-separated pair consisting of
'contour' and a string. 'on' plots level curves for the xydata data. Specify the levels
with the levels name-value pair.

Example: 'contour','on'
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Data Types: char

'flowdata' — Data for quiver plot
matrix

Data for quiver plot, specified as the comma-separated pair consisting of 'flowdata'
and a matrix of vector data. flowdata can be M-by-2 or 2-by-M, where M is the number of
mesh points p or the number of triangles t. flowdata contains the x and y values of the
field at the mesh points or at the triangle centroids.

Typically, you set flowdata to the gradient of the solution. For example:

[ux,uy] = pdegrad(p,t,u); % Calculate gradient

ugrad = [ux;uy];

pdeplot(p,e,t,'flowdata',ugrad)

In a 3-D plot, the quiver plot appears in the z = 0 plane.

pdeplot plots the real part of complex data.

Example: 'flowdata',ugrad

Data Types: double

'flowstyle' — Indicator to show quiver plot
'arrow' (default) | 'off'

Indicator to show quiver plot, specified as the comma-separated pair consisting of
'flowstyle' and a string. 'arrow'displays the quiver plot specified by the flowdata
name-value pair.
Example: 'flowstyle','off'

Data Types: char

'gridparam' — Customized grid for xygrid name-value pair
[tn;a2;a3] from an earlier call to tri2grid

Customized grid for the xygrid name-value pair, specified as the comma-separated pair
consisting of 'gridparam' and the matrix [tn;a2;a3]. For example:

[~,tn,a2,a3] = tri2grid(p,t,u,x,y);

pdeplot(p,e,t,'xygrid','on','gridparam',[tn;a2;a3],'xydata',u)

For details on the grid data and its x and y arguments, see tri2grid.
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Example: 'gridparam',[tn;a2;a3]

Data Types: double

'levels' — Levels for contour plot
10 (default) | positive integer | vector of level values

Levels for contour plot, specified as the comma-separated pair consisting of 'levels'
and a positive integer or a vector.

• Positive integer — Plot levels equally spaced contours.
• Vector — Plot contours at the values in levels.

To obtain a contour plot, set the contour name-value pair to 'on'.

Example: 'levels',16

Data Types: double

'mesh' — Indicator to show mesh
'off' (default) | 'on'

Indicator to show mesh, specified as the comma-separated pair consisting of 'mesh' and
a string. 'on' shows the mesh in the plot.

Example: 'mesh','on'

Data Types: char

'title' — Title of plot
string

Title of plot, specified as the comma-separated pair consisting of 'title' and a string.

Example: 'title','Solution Plot'

Data Types: char

'xydata' — Colored surface plot data
vector

Colored surface plot data, specified as the comma-separated pair consisting of 'xydata'
and a vector. Give data for points in a vector of length size(p,2), or data for triangles
in a vector of length size(t,2).
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Typically, you set xydata to u, the solution. pdeplot uses xydata for coloring both 2-D
and 3-D plots.

pdeplot uses the colormap specified in the colormap name-value pair, using the style
specified in the xystyle name-value pair.

When the contour name-value pair is 'on', pdeplot also plots level curves of xydata.

pdeplot plots the real part of complex data.

To plot the kth component of a solution to a PDE system, extract the relevant part of the
solution. For example:

np = size(p,2); % number of node points

uk = reshape(u,np,[]); % each uk column has one component of u

pdeplot(p,e,t,'xydata',uk(:,k)) % data for column k

Example: 'xydata',u

Data Types: double

'xygrid' — Indicator to convert to x-y grid before plotting
'off' (default) | 'on'

Indicator to convert mesh data to x-y grid before plotting, specified as the comma-
separated pair consisting of 'xygrid' and a string.

Note: This conversion can change the geometry, and can lessen the quality of the plot.

By default, the grid has about sqrt(size(t,2)) elements in each direction. Exercise
more control over the x-y grid by generating it with the tri2grid function, and passing
it in with the gridparam name-value pair.

Example: 'xygrid','on'

Data Types: char

'xystyle' — Coloring choice
'interp' (default) | 'off' | 'flat'

Coloring choice, specified as the comma-separated pair consisting of 'xystyle' and a
string.
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• 'off' — No shading, shows the mesh only.
• 'flat' — Each triangle in the mesh has a uniform color.
• 'interp' — Plot coloring is smoothly interpolated.

The coloring choice relates to the xydata name-value pair.

Example: 'xystyle','flat'

Data Types: char

'zdata' — Data for 3-D plot heights
matrix

Data for 3-D plot heights, specified as the comma-separated pair consisting of 'zdata'
and a vector. Give data for points in a vector of length size(p,2), or data for triangles
in a vector of length size(t,2).

Typically, you set zdata to u, the solution. The xydata name-value pair sets the coloring
of the 3-D plot. The zstyle name-value pair specifies whether the plot is continuous or
discontinuous.

pdeplot plots the real part of complex data.

To plot the kth component of a solution to a PDE system, extract the relevant part of the
solution. For example:

np = size(p,2); % number of node points

uk = reshape(u,np,[]); % each uk column has one component of u

pdeplot(p,e,t,'xydata',uk(:,k),'zdata',uk(:,k)) % data for column k

Example: 'zdata',u

Data Types: double

'zstyle' — 3-D plot style
'continuous' (default) | 'off' | 'discontinuous'

3-D plot style, specified as the comma-separated pair consisting of 'zstyle' and a
string.

• 'off' — No 3-D plot.
• 'discontinuous' — Each triangle in the mesh has a uniform height in a 3-D plot.
• 'continuous' — 3-D surface plot is continuous.
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zstyle relates to the zdata name-value pair.

Example: 'zstyle','discontinuous'

Data Types: char

Output Arguments

h — Handles to axis objects in the plot
vector of handles

Handles to axis objects in the plot, returned as a vector.

More About

Quiver Plot

Plot of vector field

Plot of a vector field, also called a flow plot. Arrows show the direction of the field, with
the lengths of the arrows showing the relative sizes of the field strength. For details on
quiver plots, see quiver.
• “Mesh Data” on page 2-161

See Also
initmesh | pdecont | pdemesh | pdesurf | refinemesh

Introduced before R2006a
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pdeplot3D
Plot 3-D solution or surface mesh

Syntax
pdeplot3D(model,'colormapdata',u)

pdeplot3D(model)

pdeplot3D(model,Name,Value)

h = pdeplot3D( ___ )

Description
pdeplot3D(model,'colormapdata',u) plots the data u as colors, using the 'jet'
colormap on the surface of the geometry in model.

pdeplot3D(model) plots the surface mesh. This plot is the same plot as the one
produced by pdemesh.

pdeplot3D(model,Name,Value) plots the surface mesh, modified with the
Name,Value pair.

h = pdeplot3D( ___ ) returns handles to the graphics, using any of the previous
syntaxes.

Examples
Solution Plot on Surface

Plot a PDE solution on the geometry surface.

Create a PDE model and import a 3-D geometry file. Specify boundary conditions and
coefficients. Mesh the geometry and solve the problem.

model = createpde;

importGeometry(model,'Block.stl');

applyBoundaryCondition(model,'Face',[1:4],'u',0);

c = 1;

a = 0;
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f = 2;

generateMesh(model);

u = assempde(model,c,a,f);

Plot the solution u on the geometry surface.

pdeplot3D(model,'colormapdata',u);

Plot Mesh Nodes with Labels

View the node labels on the surface of a simple mesh.

model = createpde;

importGeometry(model,'Tetrahedron.stl');

generateMesh(model,'Hmax',20,'GeometricOrder','linear');
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pdeplot3D(model,'NodeLabels','on');

view(101,12)

• “Plot 3-D Solutions” on page 3-126

Input Arguments

model — PDE model
PDEModel object

PDE model, specified as a PDEModel object.

Example: model = createpde(1)
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u — Function to plot
np*N column vector

Function to plot, specified as an np*N column vector. np is the number of points in the
mesh, and N is the number of equations in the PDE. Typically, u is the solution returned
by a solver function, such as assempde or hyperbolic.

Example: u = assempde(model,c,a,f)

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:

'NodeLabels' — Node labels
'off' (default) | 'on'

Node labels, specified as 'off' or 'on'.

Example: pdeplot3D(model,'NodeLabels','on')

Data Types: char

'FaceAlpha' — Surface transparency
1 (default) | real number from 0 through 1

Surface transparency, specified as a real number from 0 through 1. The default value 1
indicates no transparency. The value 0 indicates complete transparency.

Example: pdeplot3D(model,'FaceAlpha',0.5)

Data Types: double

Output Arguments

h — Handles to graphics objects
vector of handles
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Handles to graphics objects, returned as a vector of handles.

More About
• “Solve Problems Using PDEModel Objects” on page 2-11

See Also
PDEModel | pdeplot

Introduced in R2015a
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pdepoly
Draw polygon

Syntax
pdepoly(x,y)

pdepoly(x,y,label)

Description

pdepoly(x,y) draws a polygon with corner coordinates defined by x and y. If the PDE
app is not active, it is automatically started, and the polygon is drawn in an empty
geometry model.

The optional argument label assigns a name to the polygon (otherwise a default name
is chosen).

The state of the Geometry Description matrix inside the PDE app is updated to include
the polygon. You can export the Geometry Description matrix from the PDE app by using
the Export Geometry Description option from the Draw menu. For a details on the
format of the Geometry Description matrix, see decsg.

Examples

The command

pdepoly([-1 0 0 1 1 -1],[0 0 1 1 -1 -1]); 

creates the L-shaped membrane geometry as one polygon.

See Also
pdecirc | pderect | pdetool
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pdeprtni
Interpolate from triangle midpoint data to node data

Syntax

un = pdeprtni(p,t,ut)

Description

un = pdeprtni(p,t,ut) gives linearly interpolated values at node points from the
values at triangle midpoints.

The geometry of the PDE problem is given by the mesh data p and t. For details on the
mesh data representation, see initmesh.

Let N be the dimension of the PDE system, np the number of node points, and nt the
number of triangles. The components of triangle data in ut are stored as N rows of
length nt. The components of the node data are stored in un as N columns of length np.

Caution

pdeprtni and pdeintrp are not inverse functions. The interpolation introduces some
averaging.

See Also
assempde | evaluate | initmesh | pdeintrp
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pderect
Draw rectangle

Syntax
pderect(xy)

pderect(xy,label)

Description

pderect(xy) draws a rectangle with corner coordinates defined by xy = [xmin xmax
ymin ymax]. If the PDE app is not active, it is automatically started, and the rectangle
is drawn in an empty geometry model.

The optional argument label assigns a name to the rectangle (otherwise a default name
is chosen).

The state of the Geometry Description matrix inside the PDE app is updated to include
the rectangle. You can export the Geometry Description matrix from the PDE app by
selecting the Export Geometry Description option from the Draw menu. For details
on the format of the Geometry Description matrix, see decsg.

Examples

The following command sequence starts the PDE app and draws the L-shaped membrane
as the union of three squares.

pderect([-1 0 -1 0]) 

pderect([0 1 -1 0]) 

pderect([0 1 0 1]) 

See Also
pdecirc | pdeellip | pdepoly | pdetool
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pdesdppdesdepdesdt
Indices of points/edges/triangles in set of subdomains

Syntax
c = pdesdp(p,e,t)

[i,c] = pdesdp(p,e,t)

c = pdesdp(p,e,t,sdl)

[i,c] = pdesdp(p,e,t,sdl)

i = pdesdt(t)

i = pdesdt(t,sdl)

i = pdesde(e)

i = pdesde(e,sdl)

Description

[i,c] = pdesdp(p,e,t,sdl) given mesh data p, e, and t and a list of subdomain
numbers sdl, the function returns all points belonging to those subdomains. A point
can belong to several subdomains, and the points belonging to the domains in sdl are
divided into two disjoint sets. i contains indices of the points that wholly belong to the
subdomains listed in sdl, and c lists points that also belongs to the other subdomains.

c = pdesdp(p,e,t,sdl) returns indices of points that belong to more than one of the
subdomains in sdl.

i = pdesdt(t,sdl) given triangle data t and a list of subdomain numbers sdl, i
contains indices of the triangles inside that set of subdomains.

i = pdesde(e,sdl) given edge data e, it extracts indices of outer boundary edges of
the set of subdomains.

If sdl is not given, a list of all subdomains is assumed.
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pdesmech
Calculate structural mechanics tensor functions

Syntax
ux = pdesmech(p,t,c,u,'PropertyName',PropertyValue,...)

Description

ux = pdesmech(p,t,c,u,p1,v1,...) returns a tensor expression evaluated at the
center of each triangle. The tensor expressions are stresses and strains for structural
mechanics applications with plane stress or plane strain conditions. pdesmech is
intended to be used for postprocessing of a solution computed using the structural
mechanics application modes of the PDE app, after exporting the solution, the mesh, and
the PDE coefficients to the MATLAB workspace. Poisson's ratio, nu, has to be supplied
explicitly for calculations of shear stresses and strains, and for the von Mises effective
stress in plane strain mode.

Valid property name/property value pairs include the following.

Property Name Property Value/Default Description

tensor ux|uy|vx|vy|exx|eyy|exy|sxx|syy|sxy|e1|

e2|s1|s2|{von Mises}
Tensor expression

application {ps}|pn Plane stress|plane
strain

nu Scalar or string expression {0.3} Poisson's ratio

The available tensor expressions are

•
ux, which is ∂

∂

u

x

•
uy, which is ∂

∂

u

y
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•
vx, which is ∂

∂

v

x

•
vy, which is ∂

∂

v

y

• exx, the x-direction strain (εx)
• eyy, the y-direction strain (εy)
• exy, the shear strain (γxy)
• sxx, the x-direction stress (σx)
• syy, the y-direction stress (σy)
• sxy, the shear stress (τxy)
• e1, the first principal strain (ε1)
• e2, the second principal strain (ε2)
• s1, the first principal stress (σ1)
• s2, the second principal stress (σ2)
• von Mises, the von Mises effective stress, for plane stress conditions

s s s s
1

2

2

2

1 2
+ -

or for plane strain conditions

( )( )s s s s1
2

2
2 2

1 2
2

1 2 2 1+ - + + - -( )v v v v

where v  is Poisson’s ratio nu.

Examples

Assuming that a problem has been solved using the application mode “Structural
Mechanics, Plane Stress,” discussed in “Structural Mechanics — Plane Stress” on page
3-7, and that the solution u, the mesh data p and t, and the PDE coefficient c all have
been exported to the MATLAB workspace, the x-direction strain is computed as

sx = pdesmech(p,t,c,u,'tensor','sxx'); 
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To compute the von Mises effective stress for a plane strain problem with Poisson's ratio
equal to 0.3, type

mises = pdesmech(p,t,c,u,'tensor','von Mises',...

  'application','pn','nu',0.3);
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pdesurf
Shorthand command for surface plot

Syntax

pdesurf(p,t,u)

Description

pdesurf(p,t,u) plots a 3-D surface of PDE node or triangle data. If u is a column
vector, node data is assumed, and continuous style and interpolated shading are used. If
u is a row vector, triangle data is assumed, and discontinuous style and flat shading are
used.

h = pdesurf(p,t,u) additionally returns handles to the drawn axes objects.

For node data, this command is just shorthand for the call

pdeplot(p,[],t,'xydata',u,'xystyle','interp',...

         'zdata',u,'zstyle','continuous',...

         'colorbar','off'); 

and for triangle data it is

pdeplot(p,[],t,'xydata',u,'xystyle','flat',...

         'zdata',u,'zstyle','discontinuous',...

         'colorbar','off'); 

If you want to have more control over your surface plot, use pdeplot instead of
pdesurf.

Examples

Surface plot of the solution to the equation –Δu = 1 over the geometry defined by the L-
shaped membrane. Use Dirichlet boundary conditions u = 0 on ∂Ω.

[p,e,t] = initmesh('lshapeg'); 
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[p,e,t] = refinemesh('lshapeg',p,e,t); 

u = assempde('lshapeb',p,e,t,1,0,1); 

pdesurf(p,t,u) 

See Also
pdecont | pdemesh | pdeplot
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pdetool
Open PDE app

Syntax
pdetool

Description
pdetool starts the PDE app. You should not call pdetool with arguments.

The PDE app helps you to draw the 2-D domain and to define boundary conditions for
a PDE problem. It also makes it possible to specify the partial differential equation, to
create, inspect and refine the mesh, and to compute and display the solution from the
PDE app.

The PDE app contains several different modes:

In draw mode, you construct a Constructive Solid Geometry model (CSG model) of the
geometry. You can draw solid objects that can overlap. There are four types of solid
objects:

• Circle object — represents the set of points inside a circle.
• Polygon object — represents the set of points inside the polygon given by a set of line

segments.
• Rectangle object — represents the set of points inside the rectangle given by a set of

line segments.
• Ellipse object — represents the set of points inside an ellipse. The ellipse can be

rotated.

The solid objects can be moved and rotated. Operations apply to groups of objects by
doing multiple selects. (A Select all option is also available.) You can cut and paste
among the selected objects. The model can be saved and restored. the PDE app can be
started by just typing the name of the model. (This starts the corresponding file that
contains the MATLAB commands necessary to create the model.)

The solid objects can be combined by typing a set formula. Each object is automatically
assigned a unique name, which is displayed in the PDE app on the solid object itself. The
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names refer to the object in the set formula. More specifically, in the set formula, the
name refers to the set of points inside the object. The resulting geometrical model is the
set of points for which the set formula evaluates to true. (For a description of the syntax
of the set formula, see decsg.) By default, the resulting geometrical model is the union of
all objects.

A “snap-to-grid” function is available. This means that objects align to the grid. The grid
can be turned on and off, and the scaling and the grid spacing can be changed.

In boundary mode, you can specify the boundary conditions. You can have different types
of boundary conditions on different boundaries. In this mode, the original shapes of the
solid building objects constitute borders between subdomains of the model. Such borders
can be eliminated in this mode. The outer boundaries are color coded to indicate the
type of boundary conditions. A red outer boundary corresponds to Dirichlet boundary
conditions, blue to generalized Neumann boundary conditions, and green to mixed
boundary conditions. You can return to the boundary condition display by clicking the ∂Ω
button or by selecting Boundary Mode from the Boundary menu.

In PDE mode, you can specify the type of PDE problem, and the coefficients c, a, f and d.
You can specify the coefficients for each subdomain independently. This makes it easy to
specify, e.g., various material properties in one PDE model. The PDE to be solved can be
specified by clicking the PDE button or by selecting PDE Specification from the PDE
menu. This brings up a dialog box.

In mesh mode, you can control the automated mesh generation and plot the mesh. An
initial mesh can be generated by clicking the Δ button or by selecting Initialize Mesh
from the Mesh menu. Choose the meshing algorithm using the Mesh > Parameters >
Mesher version menu. The 'R2013a' algorithm runs faster, and can triangulate more
geometries than the 'preR2013a' algorithm. The initial mesh can be repeatedly refined
by clicking the refine button or by selecting Refine Mesh from the Mesh menu.

In solve mode, you can specify solve parameters and solve the PDE. For parabolic and
hyperbolic PDE problems, you can also specify the initial conditions, and the times at
which the output should be generated. For eigenvalue problems, the search range can
be specified. Also, the adaptive and nonlinear solvers for elliptic PDEs can be invoked.
The PDE problem is solved by clicking the = button or by selecting Solve PDE from the
Solve menu. By default, the solution is plotted in the PDE app axes.

In plot mode, you can select a wide variety of visualization methods such as surface,
mesh, contour, and quiver (vector field) plots. For surface plots, you can choose between
interpolated and flat rendering schemes. The mesh can be hidden in all plot types. For
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parabolic and hyperbolic equations, you can animate the solution as it changes with time.
You can show the solution both in 2-D and 3-D. 2-D plots are shown inside the PDE app.
3-D plots are plotted in separate figure windows. Different types of plots can be selected
by clicking the button with the solution plot icon or by selecting Parameters from the
Plot menu. This opens a dialog box.

Boundary Condition Dialog Box

In this dialog box, the boundary condition for the selected boundaries is entered. The
following boundary conditions can be handled:

• Dirichlet: hu = r on the boundary.
• Generalized Neumann: rn c u qu g· —( ) + =  on the boundary.

• Mixed: a combination of Dirichlet and generalized Neumann condition.
r

n  is the outward unit length normal.

The boundary conditions can be entered in a variety of ways. (See assemb and “Boundary
Menu” on page 4-14.)

PDE Specification Dialog Box

In this dialog box, the type of PDE and the PDE coefficients are entered. The following
types of PDEs can be handled:

• Elliptic PDE: –∇· (c∇u) + au = f
•

Parabolic PDE: d c au f
u

t
u

∂

∂
—-— ◊ ( ) + =

•
Hyperbolic PDE: d

u

t
c u au f

∂

∂
— ◊ — + =-

2

2
( )

• Eigenvalue PDE: –∇· (c∇u) + au = λdu

for x and y on the problem's 2-D domain Ω.

The PDE coefficients can be entered in a variety of ways. (See “Scalar PDE Coefficients”
on page 2-59 and “Coefficients for Systems of PDEs” on page 2-86 and “PDE Menu” on
page 4-18.)
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Model File

The Model file contains the MATLAB commands necessary to create a CSG model. It can
also contain additional commands to set boundary conditions, define the PDE, create the
mesh, solve the pde, and plot the solution. This type of file can be saved and opened from
the File menu.

The Model file is a MATLAB function and not a script. This way name clashes between
variables used in the function and in the main workspace are avoided. The name of the
file must coincide with the model name. The beginning of the file always looks similar to
the following code fragment:

function pdemodel

pdeinit; 

pde_fig = gcf;

ax = gca; 

pdetool('appl_cb',1);

setappdata(pde_fig,'currparam',...

   char('1.0','0.0','10.0','1.0'));

pdetool('snapon');

set(ax,'XLim',[-1.5 1.5]);  

set(ax,'YLim',[-1 1]);  

set(ax,'XTickMode','auto');  

set(ax,'YTickMode','auto');  

grid on;

The pdeinit command starts up the PDE app. If the PDE app has already been started,
the current model is cleared. The following commands set up the scaling and tick marks
of the axis of the PDE app and other user parameters.

Then a sequence of drawing commands is issued. The commands that can be used are
named pdecirc, pdeellip, pdepoly, and pderect. The following command sequence
creates the L-shaped membrane as the union of three squares. The solid objects are given
names SQ1, SQ2, SQ3, etc.

% Geometry description: 

pderect([-1 0 0 -1],'SQ1'); 

pderect([0 1 0 -1],'SQ2'); 

pderect([0 1 1 0],'SQ3'); 

We do not intend to fully document the format of the Model file. It can be used to
change the geometry of the drawn objects, since the pdecirc, pdeellip, pdepoly, and
pderect commands are documented.
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See Also
assempde | initmesh | parabolic | pdecont | pdeeig | pdesurf
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pdetrg
Triangle geometry data

Syntax

[ar,a1,a2,a3] = pdetrg(p,t)

[ar,g1x,g1y,g2x,g2y,g3x,g3y] = pdetrg(p,t)

Description

[ar,a1,a2,a3] = pdetrg(p,t) returns the area of each triangle in ar and half of the
negative cotangent of each angle in a1, a2, and a3.

[ar,g1x,g1y,g2x,g2y,g3x,g3y] = pdetrg(p,t) returns the area and the gradient
components of the triangle base functions.

The triangular mesh of the PDE problem is given by the mesh data p and t. For details
on the mesh data representation, see initmesh.
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pdetriq
Triangle quality measure

Syntax

q = pdetriq(p,t)

Description

q = pdetriq(p,t) returns a triangle quality measure given mesh data.

The triangular mesh is given by the mesh data p, e, and t. For details on the mesh data
representation, see initmesh.

The triangle quality is given by the formula
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where a is the area and h1, h2, and h3 the side lengths of the triangle.

If q > 0.6 the triangle is of acceptable quality. q = 1 when h1 = h2 = h3.

References

Bank, Randolph E., PLTMG: A Software Package for Solving Elliptic Partial Differential
Equations, User's Guide 6.0, Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1990.

See Also
initmesh | jigglemesh | refinemesh
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poiasma
Boundary point matrix contributions for fast solvers of Poisson's equation

Syntax

K = poiasma(n1,n2,h1,h2)

K = poiasma(n1,n2)

K = poiasma(n)

Description

K = poiasma(n1,n2,h1,h2) assembles the contributions to the stiffness matrix from
boundary points. n1 and n2 are the numbers of points in the first and second directions,
and h1 and h2 are the mesh spacings. K is a sparse n1*n2-by-n1*n2 matrix. The point
numbering is the canonical numbering for a rectangular mesh.

K = poiasma(n1,n2) uses h1 = h2.

K = poiasma(n) uses n1 = n2 = n.

See Also
poiindex | poisolv
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poicalc
Fast solver for Poisson's equation on rectangular grid

Syntax
u = poicalc(f,h1,h2,n1,n2)

u = poicalc(f,h1,h2)

u = poicalc(f)

Description

u = poicalc(f,h1,h2,n1,n2) calculates the solution of Poisson's equation for
the interior points of an evenly spaced rectangular grid. The columns of u contain the
solutions corresponding to the columns of the right-hand side f. h1 and h2 are the
spacings in the first and second direction, and n1 and n2 are the number of points.

The number of rows in f must be n1*n2. If n1 and n2 are not given, the square root of
the number of rows of f is assumed. If h1 and h2 are not given, they are assumed to be
equal.

The ordering of the rows in u and f is the canonical ordering of interior points, as
returned by poiindex.

The solution is obtained by sine transforms in the first direction and tridiagonal
matrix solution in the second direction. n1 should be 1 less than a power of 2 for best
performance.

See Also
dst | idst | poiasma | poiindex | poisolv



 poiindex

6-197

poiindex
Indices of points in canonical ordering for rectangular grid

Syntax

[n1,n2,h1,h2,i,c,ii,cc] = poiindex(p,e,t,sd)

Description

[n1,n2,h1,h2,i,c,ii,cc] = poiindex(p,e,t,sd) identifies a given grid p,
e, t in the subdomain sd as an evenly spaced rectangular grid. If the grid is not
rectangular, n1 is 0 on return. Otherwise n1 and n2 are the number of points in
the first and second directions, h1 and h2 are the spacings. i and ii are of length
(n1-2)*(n2-2) and contain indices of interior points. i contains indices of the original
mesh, whereas ii contains indices of the canonical ordering. c and cc are of length
n1*n2-(n1-2)*(n2-2) and contain indices of border points. ii and cc are increasing.

In the canonical ordering, points are numbered from left to right and then from bottom to
top. Thus if n1 = 3 and n2 = 5, then ii = [5 8 11] and cc = [1 2 3 4 6 7 9 10
12 13 14 15].

See Also
poiasma | poisolv
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poimesh
Make regular mesh on rectangular geometry

Syntax
[p,e,t] = poimesh(g,nx,ny)

[p,e,t] = poimesh(g,n)

[p,e,t] = poimesh(g)

Description

[p,e,t] = poimesh(g,nx,ny) constructs a regular mesh on the rectangular geometry
specified by g, by dividing the “x edge” into nx pieces and the “y edge” into ny pieces, and
placing (nx+1)*(ny+1) points at the intersections.

The “x edge” is the one that makes the smallest angle with the x-axis.

[p,e,t] = poimesh(g,n) uses nx = ny = n, and [p,e,t] = poimesh(g) uses nx
= ny = 1.

The triangular mesh is described by the mesh data p, e, and t. For details on the mesh
data representation, see initmesh.

For best performance with poisolv, the larger of nx and ny should be a power of 2.

If g does not seem to describe a rectangle, p is zero on return.

Examples

Try the command pdedemo8. The solution of Poisson's equation over a rectangular grid
with boundary condition given by the file squareb4 is returned. The solution time is
compared to the usual Finite Element Method (FEM) approach.

See Also
initmesh | poisolv

../examples/poisson-s-equation-on-rectangular-domain-using-a-fast-poisson-solver.html
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poisolv
Fast solution of Poisson's equation on rectangular grid

Syntax

u = poisolv(b,p,e,t,f)

Description

u = poisolv(b,p,e,t,f) solves Poisson's equation with Dirichlet boundary
conditions on a regular rectangular grid. A combination of sine transforms and
tridiagonal solutions is used for increased performance.

The boundary conditions b must specify Dirichlet conditions for all boundary points.

The mesh p, e, and t must be a regular rectangular grid. For details on the mesh data
representation, see initmesh.

f gives the right-hand side of Poisson's equation.

Apart from roundoff errors, the result should be the same as u =
assempde(b,p,e,t,1,0,f).

References

Strang, Gilbert, Introduction to Applied Mathematics, Wellesley-Cambridge Press,
Cambridge, MA, 1986, pp. 453–458.

See Also
poicalc | poimesh
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refinemesh
Refine triangular mesh

Syntax
[p1,e1,t1] = refinemesh(g,p,e,t)

[p1,e1,t1] = refinemesh(g,p,e,t,'regular')

[p1,e1,t1] = refinemesh(g,p,e,t,'longest')

[p1,e1,t1] = refinemesh(g,p,e,t,it)

[p1,e1,t1] = refinemesh(g,p,e,t,it,'regular')

[p1,e1,t1] = refinemesh(g,p,e,t,it,'longest')

[p1,e1,t1,u1] = refinemesh(g,p,e,t,u)

[p1,e1,t1,u1] = refinemesh(g,p,e,t,u,'regular')

[p1,e1,t1,u1] = refinemesh(g,p,e,t,u,'longest')

[p1,e1,t1,u1] = refinemesh(g,p,e,t,u,it)

[p1,e1,t1,u1] = refinemesh(g,p,e,t,u,it,'regular')

[p1,e1,t1,u1] = refinemesh(g,p,e,t,u,it,'longest')

Description

[p1,e1,t1] = refinemesh(g,p,e,t) returns a refined version of the triangular
mesh specified by the geometry g, Point matrix p, Edge matrix e, and Triangle matrix t.

The triangular mesh is given by the mesh data p, e, and t. For details on the mesh data
representation, see “Mesh Data” on page 2-161.

[p1,e1,t1,u1] = refinemesh(g,p,e,t,u) refines the mesh and also extends the
function u to the new mesh by linear interpolation. The number of rows in u should
correspond to the number of columns in p, and u1 has as many rows as there are points
in p1. Each column of u is interpolated separately.
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An extra input argument it is interpreted as a list of subdomains to refine, if it is a row
vector, or a list of triangles to refine, if it is a column vector.

The default refinement method is regular refinement, where all of the specified triangles
are divided into four triangles of the same shape. Longest edge refinement, where
the longest edge of each specified triangle is bisected, can be demanded by giving
longest as a final parameter. Using regular as a final parameter results in regular
refinement. Some triangles outside of the specified set may also be refined to preserve
the triangulation and its quality.

Examples

Refine the mesh of the L-shaped membrane several times. Plot the mesh for the
geometry of the L-shaped membrane.

[p,e,t] = initmesh('lshapeg','hmax',inf); 

subplot(2,2,1), pdemesh(p,e,t) 

[p,e,t] = refinemesh('lshapeg',p,e,t); 

subplot(2,2,2), pdemesh(p,e,t) 

[p,e,t] = refinemesh('lshapeg',p,e,t); 

subplot(2,2,3), pdemesh(p,e,t) 

[p,e,t] = refinemesh('lshapeg',p,e,t); 

subplot(2,2,4), pdemesh(p,e,t) 

subplot

More About

Algorithms

The algorithm is described by the following steps:

1 Pick the initial set of triangles to be refined.
2 Either divide all edges of the selected triangles in half (regular refinement), or divide

the longest edge in half (longest edge refinement).
3 Divide the longest edge of any triangle that has a divided edge.
4 Repeat step 3 until no further edges are divided.
5 Introduce new points of all divided edges, and replace all divided entries in e by two

new entries.
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6 Form the new triangles. If all three sides are divided, new triangles are formed by
joining the side midpoints. If two sides are divided, the midpoint of the longest edge
is joined with the opposing corner and with the other midpoint. If only the longest
edge is divided, its midpoint is joined with the opposing corner.

• “Mesh Data” on page 2-161

See Also
initmesh | pdeent | pdesdt
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sptarn
Solve generalized sparse eigenvalue problem

Syntax
[xv,lmb,iresult] = sptarn(A,B,lb,ub)

[xv,lmb,iresult] = sptarn(A,B,lb,ub,spd)

[xv,lmb,iresult] = sptarn(A,B,lb,ub,spd,tolconv)

[xv,lmb,iresult] = sptarn(A,B,lb,ub,spd,tolconv,jmax)

[xv,lmb,iresult] = sptarn(A,B,lb,ub,spd,tolconv,jmax,maxmul)

Description

[xv,lmb,iresult] = sptarn(A,B,lb,ub,spd,tolconv,jmax,maxmul) finds
eigenvalues of the pencil (A – λB)x = 0 in interval [lb,ub]. (A matrix of linear polynomials
Aij – λBij, A – λB, is called a pencil.)

A and B are sparse matrices. lb and ub are lower and upper bounds for eigenvalues to be
sought. We may have lb = -inf if all eigenvalues to the left of ub are sought, and rb
= inf if all eigenvalues to the right of lb are sought. One of lb and ub must be finite. A
narrower interval makes the algorithm faster. In the complex case, the real parts of lmb
are compared to lb and ub.

xv are eigenvectors, ordered so that norm(a*xv-b*xv*diag(lmb)) is small. lmb is the
sorted eigenvalues. If iresult >= 0 the algorithm succeeded, and all eigenvalues in the
intervals have been found. If iresult<0 the algorithm has not yet been successful, there
may be more eigenvalues—try with a smaller interval.

spd is 1 if the pencil is known to be symmetric positive definite (default 0).

tolconv is the expected relative accuracy. Default is 100*eps, where eps is the
machine precision.

jmax is the maximum number of basis vectors. The algorithm needs jmax*n working
space so a small value may be justified on a small computer, otherwise let it be
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the default value jmax = 100. Normally the algorithm stops earlier when enough
eigenvalues have converged.

maxmul is the number of Arnoldi runs tried. Must at least be as large as maximum
multiplicity of any eigenvalue. If a small value of jmax is given, many Arnoldi runs are
necessary. The default value is maxmul = n, which is needed when all the eigenvalues of
the unit matrix are sought.

More About

Algorithms

The Arnoldi algorithm with spectral transformation is used. The shift is chosen at ub,
lb, or at a random point in interval (lb,ub) when both bounds are finite. The number of
steps j in the Arnoldi run depends on how many eigenvalues there are in the interval,
but it stops at j = min(jmax,n). After a stop, the algorithm restarts to find more
Schur vectors in orthogonal complement to all those already found. When no more
eigenvalues are found in lb < lmb <= ub, the algorithm stops. For small values of
jmax, several restarts may be needed before a certain eigenvalue has converged. The
algorithm works when jmax is at least one larger than the number of eigenvalues in
the interval, but then many restarts are needed. For large values of jmax, which is
the preferred choice, mul+1 runs are needed. mul is the maximum multiplicity of an
eigenvalue in the interval.

Note The algorithm works on nonsymmetric as well as symmetric pencils, but then
accuracy is approximately tol times the Henrici departure from normality. The
parameter spd is used only to choose between symamd and colamd when factorizing,
the former being marginally better for symmetric matrices close to the lower end of the
spectrum.

In case of trouble,

If convergence is too slow, try (in this order of priority):

• a smaller interval lb, ub
• a larger jmax
• a larger maxmul
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If factorization fails, try again with lb or ub finite. Then shift is chosen at random and
hopefully not at an eigenvalue. If it fails again, check whether pencil may be singular.

If it goes on forever, there may be too many eigenvalues in the strip. Try with a small
value maxmul = 2 and see which eigenvalues you get. Those you get are some of the
eigenvalues, but a negative iresult tells you that you have not gotten them all.

If memory overflow, try smaller jmax.

The algorithm is designed for eigenvalues close to the real axis. If you want those close to
the imaginary axis, try A = i*A.

When spd = 1, the shift is at lb so that advantage is taken of the faster factorization for
symmetric positive definite matrices. No harm is done, but the execution is slower if lb is
above the lowest eigenvalue.

References

[1] Golub, Gene H., and Charles F. Van Loan, Matrix Computations, 2nd edition, Johns
Hopkins University Press, Baltimore, MD, 1989.

[2] Saad, Yousef, “Variations on Arnoldi's Method for Computing Eigenelements of Large
Unsymmetric Matrices,” Linear Algebra and its Applications, Vol. 34, 1980, pp.
269–295.

See Also
pdeeig
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tri2grid
Interpolate from PDE triangular mesh to rectangular grid

Syntax

uxy = tri2grid(p,t,u,x,y)

[uxy,tn,a2,a3] = tri2grid(p,t,u,x,y)

uxy = tri2grid(p,t,u,tn,a2,a3)

Description

uxy = tri2grid(p,t,u,x,y) computes the function values uxy over the grid defined
by the vectors x and y, from the function u with values on the triangular mesh defined
by p and t. Values are computed using linear interpolation in the triangle containing
the grid point. The vectors x and y must be increasing. u must be a vector. For systems
of equations, uxy interpolates only the first component. For solutions returned by
hyperbolic or parabolic, pass u as the vector of values at one time, u(:,k).

[uxy,tn,a2,a3] = tri2grid(p,t,u,x,y) additionally lists the index tn of the
triangle containing each grid point, and interpolation coefficients a2 and a3.

uxy = tri2grid(p,t,u,tn,a2,a3) with tn, a2, and a3 computed in an earlier call
to tri2grid, interpolates using the same grid as in the earlier call. This variant is,
however, much faster if several functions have to be interpolated using the same grid,
such as interpolating hyperbolic or parabolic solutions at multiple times.

All tri2grid output arguments are ny-by-nx matrices, where nx and ny are the number
of elements of the vectors x and y respectively. At grid points outside of the triangular
mesh, all tri2grid output arguments are NaN.

To interpolate all components of systems of equations, or to interpolate at all times in one
call, use pdeInterpolant along with the evaluate function instead of tri2grid.

More About
• Inhomogeneous Heat Equation on a Square Domain

../examples/inhomogeneous-heat-equation-on-a-square-domain.html
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• “Interpolate to a Grid” on page 6-56

See Also
assempde | evaluate | initmesh | refinemesh
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wbound
Write boundary condition specification file

Syntax

fid = wbound(bl,mn)

Description

fid = wbound(bl,mn) writes a Boundary file with the name [mn,'.m']. The
Boundary file is equivalent to the Boundary Condition matrix bl. The output fid is -1 if
the file could not be written.

bl describes the boundary conditions of the PDE problem. bl is a Boundary Condition
matrix. For details, see assemb.

The output file [mn,'.m'] is the name of a Boundary file. (See “Boundary Conditions by
Writing Functions” on page 2-148.)

See Also
decsg | wgeom
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wgeom
Write geometry specification function

Syntax

fid = wgeom(dl,mn)

Description

fid = wgeom(dl,mn) writes a Geometry file with the name [mn,'.m']. The Geometry
file is equivalent to the Decomposed Geometry matrix dl. fid returns -1 if the file could
not be written.

dl is a Decomposed Geometry matrix. For a description of the format of the Decomposed
Geometry matrix, see “Decomposed Geometry Data Structure” on page 2-21.

The output file [mn,'.m'] is the name of a Geometry file. For a description of the
Geometry file format, see “Create Geometry Using a Geometry Function” on page 2-23.

More About
• “Boundary Conditions for Scalar PDE” on page 2-148
• “Boundary Conditions for PDE Systems” on page 2-153

See Also
decsg | wbound




